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Máster en Ingenieŕıa Aeroespacial
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Abstract

The ever-increasing understanding of the inherent laws underpinning the
reality around us is a continuous quest that goes back to centuries of scien-
tific advances. The foundational physical principles associated to many real
systems have been discovered more than a century ago, and at this point
our comprehension of a wide range of phenomena around us has reached a
high level of maturity. This evolution in knowledge has eventually allowed
mankind to design mechanisms, strategies, devices and algorithms aiming to
dominate the associated dynamics in numerous applications and technologies.
Many of these accomplishments are related to control theory, which is used
in a wide range of scenarios in industry, automation, aerospace, robotics, etc.
It should be remarked that these fields have a heavy reliance on the knowl-
edge of physics such as fluid dynamics, classical and quantum mechanics,
electromagnetism, etc, all these disciplines being by now strongly developed
and understood by the scientific community.

In recent decades, however, a step beyond has been achieved on many
areas whose complexity prevented until recently from a proper explanation
of their inherent behaviour. This is the case of many fields which are now
being tackled from a different point of view, such as stock markets, public
opinion trends, gene networks, illness propagation, neuroscience, etc. Reality
is complex by definition, and in fact ours is meant to be the century of
complexity, according to distinguished minds such as S. Hawking, H. Pagels
or E. Wilson [Wil98]. The comprehension of complex systems will be one of
the subjects of study and research addressed from many different institutions,
academia, private companies, etc.

The so called complexity theory encompasses many different disciplines
such as complex networks, emergency, chaos theory, etc. The structural and
dynamical phenomena observed in many circumstances are better understood
with the introduction of these new tools of analysis. As in the case of more
classical phenomena listed above, in the case of complex systems it is natural
that science will make every effort to acquire tools for the control of such
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iv ABSTRACT

complexity in the benefit of particular entities or for the common wealth in
modern societies. Control of complex systems is therefore an area already
subject to an intensive research activity.

Following this rationale, this thesis addresses the topic of complex sys-
tems from the perspective of control theory. One of the studied problems
is the subject of control of molecular vibrational dynamics, which is very
relevant in chemistry due to the applications in chemical processes, etc. The
research conducted here provides an important insight in terms of control
of those dynamics by means of an external time-varying magnetic field. In
particular, a laser-perturbed HCN molecular system is studied, in terms of
transitions between chaotic and regular dynamics, molecular dissociation,
and the relation of both of them with the frequency of excitation laser. It
has been observed that if the laser frequency is in resonance with the intrinsic
vibrational frequencies of the system, the ratio of chaos trajectories increases,
with a higher probability of molecular dissociation. On the other hand, if the
ratio between the laser and the system frequencies is very irrational, regular
trajectories survive.

The topic of consensus on complex networks is also very important with
many practical applications (social networks, gene dynamics, capital markets,
etc). Games between competing teams are established aiming to influence
the collective behaviour of the components of the network according to the
interest of each team, which in many cases will be conflicting with those of
the opponent. In the research conducted in this thesis, several important
conclusions have been reached on this regard. An optimal solution has been
obtained in the selection of actions to be conducted by one of the teams in
order to maximize the retrieved benefit associated to the state of the members
of a target network of resources which are subject to consensus dynamics.
Such network constitutes a population on which two teams compete, as for
example the case of political parties competing for the popular vote on a given
election. An alternative example is the competition between two companies
on the fidelity of clients within a certain market. Furthermore, this thesis has
obtained the best design of the connecting network to the population that one
team should deploy in order to maximize achievable benefits. Moreover, it has
studied the case where each team targets only part of the general population,
for which game dynamics lead to a Nash equilibrium that depends on generic
parameters present in the setup of the game. Therefore, the optimal control
of the state of the population against the interest of the opponent team is
presented in this thesis, allowing its application of such strategy to numerous
scenarios.



Resumen

La creciente comprensión de las leyes que rigen la realidad a nuestro alrededor
conlleva una búsqueda continua que data de siglos de avances cient́ıficos. Ac-
tualmente conocemos los principios f́ısicos asociados a muchos sistemas reales,
y nuestro entendimiento de un extenso abanico de fenómenos de la realidad
ha alcanzado un alto nivel de madurez. Esta evolución del conocimiento
ha permitido a la humanidad el diseño de mecanismos, estrategias, aparatos
y algoritmos destinados a dominar la dinámica asociada en innumerables
aplicaciones y tecnoloǵıas. Muchos de estos logros están relacionados con
la teoŕıa de control, que es usada en una amplia variedad de escenarios en
la industria, la automoción, el sector aeroespacial, la robótica, etc. Todos
ellos tienen una fuerte dependencia en el conocimiento de áreas de la f́ısica
como la mecánica de fluidos, mecánica clásica y cuántica, electromagnetismo,
etc. siendo todas ellas disciplinas que actualmente han sido ya ampliamente
desarrolladas y comprendidas por la comunidad cient́ıfica.

Por otro lado, en los últimos años se ha alcanzado un conocimiento más
avanzado en muchas áreas cuya complejidad imped́ıa hasta ahora una com-
prensión apropiada de su comportamiento. Éste es el caso de muchos cam-
pos que actualmente están siendo estudiados desde un nuevo punto de vista,
como los mercados bursátiles, las tendencias en la opinión pública, las redes
genéticas, la propagación de enfermedades, la neurociencia, etc. La realidad
es inherentemente compleja, y el siglo XXI está llamado a ser el de la com-
plejidad, según la opinión de S. Hawking, H. Pagels o E. Wilson [Wil98]. Los
sistemas complejos son aquéllos cuyo comportamiento es dif́ıcil de modelar
debido a la naturaleza de las dependencias e interacciones entre sus partes,
y la comprensión de dichos sistemas es actualmente una tarea de intensa ac-
tividad. La llamada teoŕıa de la complejidad agrupa muchas disciplinas tan
diversas como las redes complejas, los fenómenos de emergencia, la teoŕıa
del caos, etc. Los fenómenos estructurales y dinámicos que se observan en
muchas circunstancias son ahora comprendidos a un mejor nivel gracias a la
introducción de nuevas herramientas de análisis (e.g. teoŕıa de redes comple-
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vi RESUMEN

jas).

Como en el caso de fenómenos más clásicos referidos más arriba, en el
caso de sistemas complejos cabe esperar que la ciencia busque métodos y
herramientas para el control de dicha complejidad en el beneficio de enti-
dades particulares y de la comunidad general en las sociedades modernas.
Por eso el control de sistemas complejos es ya un área de intensa investi-
gación. Esta tesis sigue esta ĺınea de trabajo y se centra en el estudio de los
sistemas complejos desde el punto de vista de la teoŕıa de control. El primer
problema que hemos estudiado es el control de la dinámica vibracional de
sistemas moleculares, de una gran relevancia debido a las aplicaciones en el
control de reacciones qúımicas. El estudio que se ha realizado aqúı aporta
importantes conclusiones relacionadas con el control de dicha dinámica medi-
ante un campo electromagnético externo variable en el tiempo. En particular
se estudia el sistema molecular HCN perturbado mediante un láser de fre-
cuencia variable, en términos del análisis transiciones entre régimen regular
y caótico, la disocación molecular y la relación entre ambos con la frecuencia
de control del laser usado para excitar las moléculas. Hemos observado que
si la frecuencia del láser está en resonancia con las frecuencias del sistema, la
proporción de caos es mayor y aumenta la probabilidad de disociación de la
molécula. Por otro lado si las relaciones de frecuencia son muy irracionales
(multiplos de la razón áurea) más trayectorias regulares sobreviven.

Un problema en principio muy diferente, pero que también es estudi-
ado desde la perspectiva del control de sistemas complejos es de juegos en
redes. Cuando el control se realiza por parte de dos equipos con finali-
dades contrarias emergen determinadas dinámicas de juegos. En esta tesis
se analizan los escenarios con una red compleja cuyos elementos presentan
una dinámica de consenso, y que se pretende controlar mediante una acción
externa. El consenso en redes complejas es muy importante debido a sus
numerosas aplicaciones (redes sociales, dinámica de genes, mercados de cap-
ital, etc.) Frecuentemente se establecen juegos entre equipos que compiten
por influir en el comportamiento de los componentes de una red, cada uno
de acuerdo a sus intereses. En esta tesis se presentan resultados anaĺıticos
y numéricos importantes sobre juegos y consensos en redes complejas, como
la solución óptima para la selección de las acciones que han de realizar los
miembros de un equipo para maximizar el beneficio debido al estado de los
elementos de la red objetivo. El estado de dicha red se considera como un
recurso por el que se compite, como en el caso de partidos poĺıticos que se
disputan el voto popular en una elección, o el de la competencia entre dos
empresas por la fidelidad de los clientes en un determinado mercado. Adi-
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cionalmente, se ha obtenido el diseño óptimo para la red de conexión a la
población objetivo que un equipo debeŕıa implementar para maximizar los
beneficios disponibles. Además, se ha estudiado el caso donde cada equipo
lucha por solo una parte de la población, y la dinámica del juego lleva en-
tonces a un equilibrio de Nash que depende de los parámetros que definen
el juego. Esta tesis presenta los fundamentos teóricos aśı como resultados
numéricos asociados. La metodoloǵıa presentada permite su aplicación en
numerosos escenarios de competición entre equipos.
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Notation

The following list defines the mathematical notation used in the text:

R Real numbers field
C Complex numbers field
Rn Set of real vectors of size n
Rm×n Set of real matrices of size m× n
A Matrix
Aij Matrix indexed for some purpose
AT The transpose matrix of the matrix A
A∗ The Hermitian conjugate of the matrix A
A−1 The inverse matrix of the matrix A
λ(A) An eigenvalue of the matrix A
σ(A) A singular vector of the matrix A
tr(A) Trace of the matrix A
‖A‖p induced p-norm of the matrix A
‖A‖F Frobenius norm of the matrix A
a Vector (column-vector)
aT Vector (row-vector) transpose of vector a
ai The ith element of the vector a
1 Column vector with all its entries = 1
diag(a) Diagonal matrix with diagonal entries equal to the elements of the a vector
ȧ Time derivative of vector a (= da/dt)
Df(x) Jacobian matrix of vector f
∇pH Gradient of the H scalar along vector p
∇2H Hessian matrix of the H scalar
span(a) Subspace generated by the vector a
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Chapter 1

Introduction

“The complexity of things - the things within things - just seems to
be endless. I mean nothing is easy, nothing is simple.”

– Alice Munro

“... No me atrevo a afirmar que son sencillos; no hay en la
tierra una sola página que lo sea, ya que todas postulan el universo,
cuyo más notorio atributo es la complejidad.”

– Jorge Luis Borges, Cuentos completos

The concept of complexity of a system can be addressed from different
perspectives. As a quality of the system it refers to what makes the system
complex, such as the presence of emergent properties as a consequence of
the interactions within the different parts of the system. In its second mean-
ing, complexity refers to the amount of information needed to describe the
system. For both points of view, complexity theory is a scientific discipline
encompassing a wide range of concepts and phenomena which cannot be fully
explained and analysed by traditional sciences and methodologies. Complex
systems can display special properties such as spontaneous emergence, unpre-
dictability and strong non-linearities, which yield distinctive effects on their
behaviour. Complex systems theory includes ideas derived from a number of
other disciplines such as physics, mathematics, computer science, informa-
tion theory among others, and it covers such a wide spectrum of concepts as
chaos theory, complex networks or nonlinear systems. The range of applica-
tions is very large: climatology, celestial mechanics, opinion trends on social
networks, molecular dynamics, emergent phenomena and stock markets, to
name a few. The modelling and analysis of the complex systems behavior
has experienced an improvement in the last decades due to the development
of several mathematical disciplines. In particular, two of the most commonly
used are chaos theory and complex networks.

1



2 CHAPTER 1. INTRODUCTION

The concept of chaos is generally associated with randomness, but its
mathematical definition rather refers to deterministic (not random) systems
whose behavior is only predictable for a certain period of time. Said period
depends on the nature of the problem under study, the available measure-
ment accuracy and the uncertainty that is acceptable for practical purposes:
it ranges in the order of miliseconds (electric chaotic circuits) to millions of
years (solar system). Indeed, the study of chaotic behavior started with the
classical mechanics description of the three-body problem, whose intricacies
were addressed by several scientists since Newton, with important contribu-
tions from Lagrange, Laplace, Hamilton, Jacobi, Weierstrass, etc., but it was
only the French mathematician Henri Poincaré who properly analyzed the
integrability of such systems in the XIX century [Poi1890]. Perturbation the-
ory of Hamiltonian systems is core for the understanding of chaotic behavior.
This topics was nicely addressed in the seminal work of Kolmogorov, Arnold,
and Moser, in the middle of the XX century [Kol54b] that provided an ade-
quate setup for the analysis of chaos and the characterization of the transition
from orderly trajectories to chaotic ones as the amplitude of the perturbation
of a Hamiltonian system is increased. As an output of such research they
produced the celebrated KAM theorem [Kol54a, Arn61, Mos68]. The study
of dynamical chaos theory has substantially flourished thereupon, becoming
an area of active research within the scientific community of dynamical sys-
tems [Ber78, Chi79, Gru00, Rad88, Lich92]. Furthermore, the interest in the
field of chaos theory received an enormous boost since the 1960s after the ad-
vent of computers for analysis of practical scientific matters. Edward Lorenz
was the pioneer in this line of research [Lor93] while working on the study of
weather prediction, he came across with chaotic behavior when he decided
to divide a simulation span in two parts, the second one starting with initial
conditions based on the final output of the first one. The numerical accu-
racy in the definition of those conditions for the second simulation showed
a completely different behavior than the one observed without dividing the
simulation in two. Such sensitivity to initial conditions is the trademark of
chaotic systems, and its relevance in disciplines such as climatology, physical
chemistry, physiology or fluid turbulence has been extensively studied ever
since.

On the other hand, the study of complex networks has been mostly con-
ducted in this century, with mathematical origins rooted in the older branch
of mathematics named graph theory. Nowadays, the relevance of networks
in many fields (economics, communications, biology) and their applicabil-
ity to describe complex phenomenon associated to the interconnections be-
tween a high number of agents make them very suitable for the analysis of
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a high number of applications [New03]. Their presence spans such different
topics as biological systems (gene regulatory networks, infection dynamics,
species interaction), economics (bank lending mechanisms, market competi-
tions, supply chains), telecommunications and electrical engineering (World
Wide Web, power distribution grids) or sociology (professional associations,
political parties, clubs, and the like). Research has proven that most so-
cial, biological, and technological networks are characterized by non-trivial
topological features, with patterns of connection between their elements that
are neither purely regular nor random. Besides the structural properties of
complex networks, dynamical processes taking place on networks are also
extremely important, such as the way traffic flows over the Internet or a dis-
ease spreads through a community. Scientific research on complex networks
has been mostly focused on topological properties of networks and on the
associated dynamics, while study of control techniques of such dynamics has
basically started only in recent years.

As opposed to new developments on complex systems theory, the num-
ber of applications based on traditional physics had many years to develop
and it is nowadays very extensively observed in all sort of daily technologies:
internet, cell phones, air conditioning, terrestrial transportation, airplanes,
television, etc. Numerous engineering applications have made use of the
physics developed mostly during the XIX and XX centuries for their routine
use in modern life. Additionally, mathematics has experienced also an ex-
traordinary development in parallel to physics during those decades, mutually
impacting each other. One of the subjects strongly related to mathematics
and physics is control theory. As described in the following lines, the purpose
of this thesis is to contribute to the application of control (extensively used
in technologies such as those listed in this paragraph) to complex systems,
by providing relevant insights and conclusions on two problems studied here
in depth.

Although practically applied since ancient times, the theory of control
as an independent discipline started up based on ideas developed from the
XIX century on, like the principles of the governors used on rotative steam
engines ([Kang16] and figure 1.1). Since the beginning, industry was one
of the realms with more control applications: for instance, Jacquard’s loom
was a remarkable invention that allowed the automatic manufacturing of a
variety of weaving patterns, and it was controlled by a chain of punched cards.
Such idea was extensively used in the XX century for computer programming
during several decades, and thus Jacquard’s loom can be considered as an
early application of programmable automatic control ([Ess04], figure 1.1).
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Figure 1.1: Examples of centrifugal governor (left, [Por18]) and Jacquard’s
loom (right [Ver17]).

Thus, at that time the practical implementation of the control design was
carried out by means of dedicated hardware as with the punch cards, but in
the last decades the trend has been towards the use of software embedded in
different sorts of central computing devices.

Two concepts are key in control theory: feedback and stability. The
concept of feedback was present from the beginning as in the centrifugal
governor's principle: two balls are connected to the rotary mechanism that
is fed by a fuel valve. When the governor is at rest, the valve is open, while
when it is rotating the balls rise due to the centrifugal force. This forces the
central valve stem downward so that the valve gets closed, thus decreasing
the rotation rate. This way, the engine is controlled to a constant speed by
regulating the amount of fuel admitted, providing feedback to the system to
compensate for variations in the load, external disturbances, etc.

The concept of stability is also of utmost importance in control. The
design of a control mechanism must ensure the stability of the complete
system in order to guarantee its behaviour within the expected range of con-
ditions. The Nyquist stability criterion, developed by Harry Nyquist at the
Bell Telephone Laboratories, sets the principles for analysing and designing
the stability of a feedback system [Oga10]. At that time there was a strong
motivation to analyse the stability of electronics designs in many applica-
tions (amplifiers, oscillators, etc). The stability theory for linear dynamical
systems is extensively developed with many mathematical tools: Bode and
Nichols plots, root locus, Routh criterion, etc (ibid.). The equivalent for non-
linear systems is the Lyapunov stability theory, which is applied in nonlinear
control [Kha01]. However, the problem of finding an adequate Lyapunov
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function to demonstrate and analyse the stability of nonlinear systems limits
the range of applicability of said theory.

After 1960, the methods and ideas used hitherto began to be considered
as part of classical control theory. The new technology developments and
applications showed that models considered up to that moment were not
accurate enough to describe the complexity of the real world. This generated
important new efforts in this field and new techniques were found (mostly
based on the time domain), including such substantial contributions as those
obtained by R. Kalman in the filtering and estimation techniques [Kal60], or
R. Bellman in the context of dynamic programming [Bry75]. For example,
the Kalman filter was implemented in the Apollo program as a key algorithm
to be used by the spacecrafts onboard navigation system on its way to the
Moon [Grew10].

Besides the aforementioned concepts, optimization is another key topic
in mathematics, engineering design and control. It can be regarded as a
branch of mathematics whose goal is to maximize a benefit (or minimize
a cost) by setting a number of variables to their most adequate value for
such purpose. The underlying ideas are present in mathematical relevant
topics such as the calculus of variations (the brachistochrone curve being a
classical problem in this matter). Regarding control, one of the cornerstones
of optimal control theory is the Pontryagin’s maximum principle [Bry75],
which allows finding the best possible control for taking a dynamical system
from one state to another in the presence of constraints. Its rationale is
based on the maximization of a Hamiltonian function (this function being
also found in chaos theory as explained later on). Optimization theory is
applicable to many practical situations (power consumption minimization,
shortest or quickest path, transportation routes design, etc.).

Control and estimation theory are currently areas of very intensive re-
search in many subdisciplines: robust control, artificial intelligence, machine
learning, etc. Their applications are ubiquitous in the automotive and aero-
nautical fields, cell phones, industrial automation, robotics, telecommunica-
tions, space engineering, etc.

There is a discipline closely related to control theory which has reached
an extraordinary development since the middle of the XX century: game
theory. This can be defined as the study of mathematical models of conflict
and cooperation between intelligent rational decision-makers [Mye91]. It
has numerous applications in economics and business, international politics,
computer science, biology, psychology, etc. Classical examples are zero-sum



6 CHAPTER 1. INTRODUCTION

games, prisoner dilemma, auctions, pricing strategy, or war bargaining. The
basic elements which are always present in the setup of the problem are the
players of the game, the set information and actions available to each of them
(and the strategies chosen based on those options), and the payoff for each
player of the combined actions taken by him and his opponents.

From a control theory perspective, one can interpret a control law as
a type of intelligent rational decision-maker designed to produce a desired
effect. Accordingly, game theory can be viewed as the study of conflict and
cooperation between interacting controllers, where the identities and goals
depend on the specific problem [Mar18]. For instance, the case of competition
games considers two players where the benefit of one of them is obtained
against the interests of the other. From a control point of view, the strategy
followed by the opponent is considered by the other player as the environment
and dynamics which the player is trying to control. Optimal control theory is
also present in this setup, since the decision-making process followed by each
player is defined to discern the best strategy against all possible decisions of
the opponent. Furthermore, there is an important branch of control theory
named robust control, in which the controller is designed based on a game
theory setup using a minimax approach, where the external disturbance and
noise are considered as opponent players against the robust controller, which
chooses the optimal decision against all possible outcomes of disturbance and
noise within a given range [Zho98].

A different game setting connected to control theory is that of cooperation
games. Here, there can be many players and the defining feature is that all
players follow decision dynamics ultimately leading to a given consensus.
Generally, each player has access to different information, and thus it is not
possible to follow a centralized controller implementation.

Therefore, game theory can be considered as a generalization of control
theory. The second part of the thesis deals with both competition games and
consensus dynamics.

As previously explained, the control theory is extensively developed in its
application to linear systems [Oga10, Bay99]. Although to a lesser extent,
stability and control theory for nonlinear systems has also the subject of
deep research and application for many years. Important concepts in nonlin-
ear control include perturbation theory and averaging, backstepping, sliding
mode, etc. (see [Kha01] for a good review in the subject).

In terms of complexity, yet a step beyond standard linear and nonlinear
control theory is the subject of chaotic systems control, which has also been
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the topic of intensive investigation in recent decades. A key feature here
is the fact that one can lead a given chaotic system to follow a certain de-
sired dynamic behaviour by means of properly chosen small perturbations,
as opposed to non-chaotic systems for which the effort to attain this goal
is typically on the order of magnitude of the unperturbed evolution of the
dynamical variables. A relevant technique based on this idea is the OGY
method (Ott, Grebogi, and Yorke, [Ott90]). This procedure is based on de-
termining some of the unstable low-period periodic orbits that are implicit
in the chaotic system dynamics, and based on the location and the stabil-
ity of these orbits the control designer selects one which yields the desired
system performance. Another example of control of chaotic systems is the
topic of chaos synchronization, which has also been the subject of detailed
study [Hea94, Boc02], and it is related also to communication systems by
means of chaos. An extensive review of chaotic systems control is presented
in [Boc00].

The first part of this thesis deals with the subject of control of Hamilto-
nian systems, and in particular the dynamics of the HCN molecule. It should
be noted that one topic of paramount relevance in chemical dynamics is the
active control of molecular dynamical systems and chemical reactivity. In
the present research, the goal of the control is to characterize and select the
actions that entail transition between regular and chaotic regime (and also
on the molecule dissociation) depending on the value of the control parame-
ter (namely the frequency of the laser exciting the molecule). In this thesis
we have characterized the associated behaviour both in phase space and fre-
quency domain, providing evidence of the underlying rationale associated to
KAM theory. The research reported here was published in [Lop16].

Another application of control theory carried out in this thesis to com-
plex systems is the control of complex networks, which recently has been
the subject of extensive research in the literature ([Liu11, Gao14, Liu16]).
Here, the concepts of controllability and observability of linear systems are
also applicable for the case of linear dynamics on complex networks, but in
order to cope with large networks (that entail non-feasible tests on control-
lability and observability because of the scale of the problem) the concept
of structural control is used to properly handle this issue, because it allows
eliciting whether a network is controllable even when the weight of each
edge on the network is not known (it is enough to know the existing links
among the elements of the network). Taking this approach, the formulation
allows deriving a dedicated algorithm identifying the minimum set of inputs
that guarantee structural controllability. In this context, the second part
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of this thesis also deals with control of complex networks but taken from
a different perspective. As already explained above, game theory can be
considered as an extension of control theory when more than one controller
act on the dynamics of a certain system. The study of Games on Networks
has been extensively explored in recent years from a number of perspectives
[Nis07, Jack14, Bram14, Ell18, Kar11, Gal10, Ball06, Jack10]. The most
commonly found framework features a number of agents linked by means of
a complex network and following certain strategies, aiming to achieve a cer-
tain objective (i.e. maximizing an associated individual payoff). A typical
example of this behaviour is given by the concepts of strategic complements
and strategic substitutes, which constitute two canonical approaches for a
variety of games [Jack14, Bram14, Gal10]. In many cases, the studied games
deal with individuals’ behaviour within a social structure, as in [Ell18], where
the decisions of single agents towards improvement of their payoff is studied,
analysing the features of the network that lead to better Pareto equilibria.
Social activities can also imply the search of a key player [Ball06]. A generic
review of social and economic networks and associated games is presented
in [Jack10]. In other cases, dynamics between biological agents are investi-
gated, as in [Kar11] which addresses the competition of two diseases within
a human population, aiming to maximize their spreading over the network.

Additionally, consensus dynamics in networks are also addressed in nu-
merous papers in the literature. This concept includes such important phe-
nomena as synchronization of coupled oscillators, as in the celebrated Ku-
ramoto model [Kur84] where several elements connected through a complex
network follow oscillatory dynamics which can lead to phase synchronism
(and therefore consensus) depending on the coupling gains. Another impor-
tant consensus topic deals with flocks dynamics of mobile agents [Olf06] or
robots cooperation [Ege02]. Other examples are related to consensus in small-
world networks [Xia04] or information fusion algorithms for sensor networks
[Xia05]. For a review of consensus dynamics, see [Olf07] and the references
therein.

Both concepts of games on networks and consensus dynamics are taken
into account in the study reported in [Zha14] and [Zha15], which consider the
case of a competition between two agents, linked to a network of elements
who are influenced by them. The goal of each player is to maximize its pay-
off, associated to the sum of the states of the elements of the population.
A similar problem is addressed in reference [Far12], in which a number of
disseminating agents must be located within a complex network, in order to
maximize the distribution of correct information against a group of misin-
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formers already localized in the network. This thesis generalizes the problem
of games on a network where consensus dynamics are present, by broadening
the associated scope. Instead of considering a competition between two sin-
gle agents, games on networks between two competing teams are explored.
A general population (GP ) of elements is subject to certain consensus dy-
namics which depends on the nature of the real problem. Each competing
team consists of a network of agents connected to GP , and each member of
the team acts on the network with a certain intensity, influencing the con-
sensus dynamics in order to maximize the team’s payoff, while ensuring that
the overall energy used by the team is bounded for the sake of competition
fairness. The concept of energy is here associated to the effort exerted by
each team on the game (e.g. money investment, resources dedication, etc.).

Moreover, this thesis considers several consensus dynamics among the
members of GP to reach a steady state, obtaining a theoretical optimal set of
actions of the team’s members which takes into account such dynamics. Ad-
ditionally, here we compare that result with numerical simulations obtained
by genetic algorithms, verifying the optimal solution. The mathematical base
relies on singular value decomposition aiming at maximum amplification in
the desired singular vector. Furthermore, on this thesis we use the founda-
tions set by this technique to establish the procedure for the optimal design
of the connection between the elements of the team and the GP . As a result,
one team is able to optimally connect with the general population so that
its achievable performance is maximized against the other competing team
which uses arbitrary connections.

The research presented here also analyses the possibility of each team
aiming at some parts of the population, selecting its strategy and reacting to
the action of the opponent team. The agents of each team are then divided
in two or more subgroups, each of them specialized in targeting a certain
subset of the general population. Thus, each team has the additional control
variable of selecting how its action energy is distributed among those groups
in order to maximize its payoff, taking into account the equivalent decision
of the opponent team. In this case one singular value is associated to each
target group, and the optimum action selection is still based on the solution
described in the thesis for the whole GP . Finally, it is shown that this setup
defines certain game dynamics. An application is considered at the end of
the chapter including numerical simulation, where the associated strategies
of both teams ultimately lead to a Nash equilibrium.

This thesis is organized as follows: Part I reviews important concepts
on dynamical systems and control theory, including Hamiltonian systems,
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chaos and also game theory as a generalization of control. Part II presents
the study conducted on HCN molecule vibrational dynamics, its control by
means of a laser and the results both in phase space and in frequency domain.
Part III deals with dynamics on complex networks. In particular, consensus
dynamics are described along with competition games between two teams
over the state of the nodes of a network. Part IV list the conclusions reached
during the research conducted in the framework of this thesis. Literature
references and an appendix are available at the end of the document.



Part I

Dynamics and Control
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Chapter 2

Dynamical Systems and Chaos
Theory

2.1 Dynamical systems

A dynamical system changes its state over time, defined by a number of
variables whose evolution is governed by a certain law, generally subject to
external actions [Kat95, Hale91]. The rule for time evolution deterministi-
cally specifies how the state of the system, as given by a set of state variables,
changes in time from a given initial condition (i.e. the initial state of the sys-
tem). It is typically defined by a state vector (i.e. position, velocity, etc.)
contained within the state space (for example Rn, with n the number of
parameters defining it). Therefore, the three main concepts present in a
dynamical system are:

• A state (or phase) space M which is associated to those features of the
system that change over time.

• A time variable (either continuous or discrete) which is directly related
to the unfolding of events.

• A time-evolution law. This is a rule that determines the state of the
system at a given time as a function of the state in previous times.
This implies also dependency of the dynamics on external actions, if
applicable.

A dynamical system can be formally defined ([Bro10]) as a structure
consisting of a state space M and an evolution operator:

13
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φ : G×M →M

(t,x) 7→ φt(x) (2.1)

Here G is a semigroup (associated to the time) and x denotes the state
vector of the dynamical system (each element in the vector representing one
of the degrees of freedom of the system). The evolution operator satisfies the
composition rule given by:

φt ◦ φs = φt+s (2.2)

If G is a group, the dynamical system is invertible, resulting in the iden-
tity:

φt ◦ φt−1 = φe (2.3)

where φt−1 denotes the inverse of φt and with φe being the identity ele-
ment. We refer to the set of phase space points followed by the time evolution
of the system φt as an orbit or trajectory, starting from the initial condition
x0 ∈M .

There are two main types of dynamical systems depending on the nature
of time:

• Continuous systems, with G = R (for reversible systems) or G = R+

(irreversible systems)

• Discrete systems, with G = Z (reversible systems) or G = N0 (irre-
versible systems)

The definition of reversibility is given at the end of this section, since it
previously requires the concepts of vector field and map which are introduced
in the following lines.

In this thesis both discrete and continuous dynamical systems are present.
In particular, continuous Hamiltonian systems are studied in the first part of
the thesis (vibrational dynamics of the HCN molecule). On the other hand,
the second part deals with discrete dynamics over networks, in the form of
consensus dynamics and games played over the network, both of which are
described by a discrete time framework.
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Let f ∈ C∞(M,Rn) (with M ⊂ Rn) be a function that implicitly defines
the rule for the time evolution of an n-dimensional dynamical system by the
initial value problem [Hale91]:

ẋ = f(x) and x(0) = x0 (2.4)

with x0 ∈ M being a given initial condition. Geometrically, the vector
field f is such that solutions to the initial value problem are curves on M
that are tangent to f at each point. Indeed, a solution is nothing but the
orbit associated to x0. The family of solutions of possible phase space points
Φ : Rn x M →M is called the flow of the dynamical system.

A set U ⊆ M is said to be invariant if, for every x ∈ U , φt(x) ⊆ U for
all t. If a phase-space point is found such that φt(x) = x for all t, x is said
to be a fixed point or equilibrium point. If, for a given x ∈M , there is some
T > 0 such that φT (x) = x, the minimum T for which this holds is called
the period of the closed orbit passing through x. An orbit is called periodic
if one point of the orbit is periodic, and hence all points are, as it follows
by the composition rule of the ow that φt+T (x) = φT (x). Clearly, a periodic
orbit is also an invariant set of the dynamics.

A fixed point xe is said to be stable if for any given neighbourhood U(xe)
(i.e. any connected open set such that xe ∈ U(xe), there exists another
neighbourhood V (xe) contained in it, V (xe) ⊆ U(xe), such that any solution
starting in V (xe) remains in U(xe) for all t ≥ 0. The set is said to be
asymptotically stable if it is stable, and if there is a neighborhood of xe such
that for all xe starting in it it holds that

lim
t→∞
‖φt(x)− xe‖ = 0 (2.5)

Fixed points can be analyzed for both linear and non-linear systems. The
dynamics of a linear system are given in general by means of the following
equation:

ẋ = Ax (2.6)

where x ∈ Rn is the state vector and A ∈ Rn×n is the state or system
matrix. A broader definition including control inputs and sensor outputs is
considered later in this chapter when studying control systems, by means of
equation 3.8. The stability of a linear system can be studied by means of the
eigenvalues of the matrix A [Bay99].
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In the case of a non-linear system, a well known technique to characterize
stability of fixed points is given by means of the so called Lyapunov func-
tions [Kha01]. Nevertheless, a first approach to grasp the stability behaviour
in the neighbourhood of a fixed point can be achieved by linearization of
the system around the equilibrium by means of the Jacobian matrix of first
partial derivatives of the vector field f:

ξ̇ = Df(xe) · ξ (2.7)

with x = xe + ξ, and ξ ∈M a vector with ‖ξ‖ << ‖xe‖.

When Df(xe) has no eigenvalues with zero real part, xe is called a
hyperbolic equilibrium point. For this kind of points their stability type
in the non-linear system is determined by the linearization process. This is
not applicable for fixed points with zero real parts. In order to characterize
the stability of a hyperbolic fixed point of the non-linear system, we first
remind that a homeomorphism is an equivalence relation between points in
two topological spaces that is continuous in both directions. Using this con-
cept, an important theorem due to Hartman and Grobman [Guc83] states
that for a hyperbolic fixed point xe there is a homeomorphism h defined in
some neighborhood U of xe that locally associates orbits of the nonlinear
flow φt(x) ⊆ U to those of the linear flow etDf(xe).

We now define the local stable and unstable manifolds of xe in the neigh-
borhood U respectively as follows [Guc83]:

W s
loc(x) = {xe ∈ U, φt(x)→ xe as t→∞, and φt(xe) ∈ U ∀t ≥ 0}

W u
loc(x) = {xe ∈ U, φt(x)→ xe as t→ −∞, and φt(xe) ∈ U ∀t ≤ 0}

(2.8)

The global stable and unstable manifolds of xe are given by propagating
backwards in time the points in the local manifold W s

loc, and forwards for
those in the local manifold W u

loc:

W s
loc(x) =

⋃
t≤0

φt(x)(W s
loc(x))

W u
loc(x) =

⋃
t≥0

φt(x)(W u
loc(x))

(2.9)

An orbit connecting one fixed point to itself is referred as homoclinic.
On the other hand, those trajectories that connect two distinct equilibrium
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points are named heteroclinic. The closed path formed by heteroclinic orbits
is called heteroclinic cycles.

The discrete-system counterpart of a vector field is a map. In physics and
mathematics, a “map” is any mathematical transformation that is applied
over and over again in sequence. Formally, it is a function that associates
the state of the system at time n+ 1 with its state at time n.

x(n+ 1) = f(x(n)) (2.10)

where f : M → M is a map of the state space M into itself and (x(n))
denotes the state at the discrete time n. Each implementation of the math-
ematical equations is called an iteration of the map. Area preserving maps
provide the simplest and most accurate means to visualize and quantify the
behavior of conservative systems with two degrees of freedom. The logistic
map is a classical scalar example (here M is given by R), determined by a
parameter λ > 1 and defined as:

x(n+ 1) = f(λ, x(n)) = λx(n)(1− x(n)) (2.11)

The concepts of equilibrium points, stability and linearization described
above for continuous systems are also applicable for discrete-time systems.
The concepts of homoclinic and heteroclinic trajectories can also be applied
for the Poincaré map defined by the Surface of Section in §2.4.1. This is of
high relevance when studying the presence of elliptic and hyperbolic points
in the PSOS of dynamical systems, in particular the HCN dynamics under
study in part II.

Before finishing this section, let us now define the concept of reversible
dynamical system [Wig03]. We provide the definition for either a contin-
uous or a discrete time dynamical system, which are respectively given by
equations 2.4 and 2.10. We consider a map:

F : Rn 7→ Rn (2.12)

such that:

F ◦ F = φe (2.13)

where φe denotes the identity map. Then, a vector field f is said to be
reversible if:
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d(F (x))

dt
= −f(F (x)) (2.14)

This can be described as the dynamics in the phase space F · Rn being
given by the time reversed vector field.

Similarly, a map g is said to be reversible if

g(F (x(n+ 1))) = F (x(n)) (2.15)

which implies that in the phase space F ·Rn, the map g reverses the time
direction of trajectories.

As a final remark, we should note that a dynamical system can be char-
acterized by its behaviour in the time domain as described above (e.g. by
means of differential equations in the continuous case or difference equations
for discrete time systems) and also in the frequency domain (for example
by means of transfer functions in the case of linear systems). This thesis
mostly considers the time domain characterization, although frequency anal-
ysis is also used in some sections of part II, regarding dynamics of the HCN
molecule.

2.2 Hamiltonian Systems

One of the most fundamental description of dynamical systems is the formu-
lation of physical phenomena in terms of the Lagrangian and Hamiltonian
mechanics. The derivation of the Lagrange’s equation can be obtained based
on the so called D’Alembert’s principle [Gol80]. For this purpuse, we first
define the virtual work of the ith force in the system Fi along the virtual dis-
placement δri by means of the dot product of these two vectors. Then, the
dynamics of the system are included into D’Alembert’s principle for systems
where the virtual work of the forces of constraint vanishes. By introducing
generalized coordinates qj in the equations (which are independent of each
other for holonomic constraints) the principle renders a preliminary form of
Lagrange’s equations, with j = 1 · · ·N and N being the number of coordi-
nates:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj (2.16)

where T is the kinematic energy and Qj denotes the generalized force
defined by:
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Qj =
N∑
i=1

Fi ·
∂ri
∂qj

(2.17)

when the external forces can be derived from the gradient of a scalar
potential function V , equations 2.17 can be expressed in terms of the La-
grangian L = T − V :

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= 0 (2.18)

which are the classical form of Lagrange’s equations. It should be noted
that this form of the equations can be used even if there is no potential
function V which depends only on the generalized coordinates, but there
is instead a generalized potential U which depends also on the generalized
velocities q̇j, and the Lagrangian is then given by L = T − U . A classical
example of such systems is given by the Lorentz force which is applied when
a charged particle moves in the presence of a magnetic field [Gol80].

Alternatively, the Lagrange’s equations can also be derived from Hamil-
ton’s principle. If we define the line integral I of a system as the integral of
the Lagrangian between two fixed times t1 and t2, this principle states that
the motion of the system is such that the variation of the line integral is zero:

δI =

∫ t2

t1

L(q1, · · · qN , q̇1, · · · q̇N , t)dt = 0 (2.19)

An alternative description of the dynamics of a system is given in terms
of Hamiltonian dynamics. According to Hamilton’s formulation, mechanical
dynamical systems are described in terms of position coordinates and its
conjugate momenta, rather than of generalized velocities and positions as
in the Lagrangian formulation. Hamilton’s equations are given by [Gol80,
Fet80]:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

,

∂H
∂t

= −∂L
∂t

i = 1, . . . , N (2.20)

where N is the number of degrees of freedom; and {qi} and {pi} are the gener-
alized coordinates and their corresponding conjugate momenta, respectively.
The vectorial form is expressed as follows:
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dq

dt
=
∂H
∂p

,
dp

dt
= −∂H

∂q
, (2.21)

with (q,p) = (q1, q2, . . . , qN , p1, p2, . . . , pN) being the state vector formed
by the coordinates and the corresponding conjugate momenta.

H and L respectively denote the Hamiltonian and Lagrangian functions
describing the system, which are related by the Legendre transformation:

H(q, p, t) =
N∑
i=1

(q̇ipi)− L(q, q̇, t), (2.22)

where q̇i are the first derivatives of the generalized coordinates and pi =
∂L

∂q̇i
are defined as the ith generalized or canonical momenta.

2.2.1 Phase Space

The 2N dimensional space formed by the coordinates of the system {qi} and
their conjugate momenta {pi} is called the phase space of the system, as op-
posed to that formed only by the position coordinates, which is known as the
configuration space. In phase space, each point represents a particular state
of a dynamical system. The coordinates of the point are numerically equal to
the values that the variables assume when the state occurs. Therefore, when
these states of the system form a chain of points, this sequence represents
the flow of the change of state of the dynamical system.

The motion of the system is obtained by integration of Eq. 2.20, starting
from a suitable set of initial conditions, p(0), q(0). In this way, trajectories
in phase space can be calculated as the evolution in time of this point (p(t),
q(t)), where the motion of the system is most clearly visualized, since all
dynamical information is readily apparent.

The Hamiltonian phase space has very special properties. If the system
has some translational symmetry then some momenta may be conserved
quantities [Fet80]. This concept is generalized in the Noether’s theorem
[Noe1918].

Additionally, if the Hamiltonian H does not depend upon time in an
explicit way, then the system is also conservative, and it is defined as:

H = T + V (q), (2.23)
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and represents the total energy of the system. For the general case, however,
the Hamiltonian is not always conservative. For Hamiltonian systems there
will be 2N dimensions for N degrees of freedom and chaos can occur only
when N > 1, so that 2 degrees of freedom must be available to observe
Hamiltonian chaos.

Phase Space Volume Conservation

A volume element at some initial time, t0, can be written as

dV N
t0

= dp1(t0)...dpN(t0)dq1(t0)...dqN(t0). (2.24)

It is related to a volume element, dVt, at time t by the Jacobian, JN(t0, t)
of the transformation between phase space coordinates at time t0, {pi(t0)},
{qi(t0)} and coordinates at time, t, {pi(t)}, {qi(t)}. Thus

dV N
t = JN(t, t0)dV

N
t0
. (2.25)

For systems obeying Hamilton’s equations (even if they have a time depen-
dent Hamiltonian), the Jacobian is a constant of the motion,

dJN(t, t0)

dt
= 0, (2.26)

and therefore volume elements do not change in time. Thus the phase space
behaves like an incompressible fluid.

On the other hand, dissipative systems are those for which phase-space
volume contracts under the flow.

2.2.2 Conservative Systems

The physical system that conserve total energy have always raised a special
interest in the world of physics and mathematics. Often, a complicated sys-
tem problem can be simplified to a conservative system and enough insight
obtained that the task of analyzing the real system is made far easier. A
system is considered conservative if the work to displace a particle between
two arbitrary points is independent of the path followed between those two
points. It can be shown that a necessary and sufficient condition for such
result is that the applied force can be derived from a scalar function of po-
sition. Thus, in a conservative system the potential energy, V , depends only
on the position coordinates. For such systems the total energy E, remains
constant with time and the classical mechanical Hamiltonian function turns
out to be simply the total energy expressed in terms of position coordinates
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and conjugate momenta. Conservation of energy in Hamiltonian mechan-
ics requires that ∂H/∂t = 0. Then, the value of the Hamiltonian remains
constant along any trajectory.

Conservative systems themselves are divided into two types, integrable
and non–integrable systems. In the following we review some properties of
integrable systems.

Integrable Systems

In general, integrable systems have as many independent integrals of motion
as they have degrees of freedom (Integrals of motion are also called constants
of motion), and the corresponding dynamics is regular.

The mathematical condition for the conservation of a physical magnitude
can be expressed by means of Poisson brackets 1.

Let us consider a phase space function, f(qi, pi, t)

df

dt
=
∂f

∂t
+

N∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
. (2.27)

By using Hamilton equations, Eq. 2.27 can be rewritten as

df

dt
=
∂f

∂t
+ {f,H}Poisson, (2.28)

where

{f,H}Poisson =
N∑
i=1

(
∂f

∂qi

∂H
∂pi
− ∂f

∂pi

∂H
∂qi

)
. (2.29)

These relation can be used to express Hamilton’s equations as follows
[Gol80]:

q̇i = {qi,H}Poisson, ṗi = {pi,H}Poisson (2.30)

It can be easily shown that the Poisson brackets fulfill

{f, g}Poisson = −{g, f}Poisson
1The Poisson bracket of two functions, r(q, p) and s(q, p), of the generalized coordinates

and momenta, qj ,pj , is defined as

{r, s}Poisson =
∑
j

[
∂r

∂qj

∂s

∂pj
− ∂r

∂pj

∂s

∂qj

]
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and are invariant under canonical transformations2.

The conservation condition for a function f(qi, pi, t) can then be expressed
in terms of Poisson brackets as:

{H, f}Poisson =
∂f

∂t
(2.31)

Moreover, the integrability condition for a time independent conservative
systems can be expressed as

{fi, fj} = 0 (i, j = 1, . . . , N), (2.32)

where one of the conserved function is the Hamiltonian.

Action–Angle Variable

Hamilton equations of motion can be written in terms of any convenient set
of generalized coordinates. Therefore, one can transform between coordinate
systems and leave the form of Hamilton’s equations invariant via canonical
transformations. There is, however, one set of canonical coordinates which
plays a distinctive role in terms of the analysis of chaotic behavior in classical
nonlinear systems. These are the action–angle variables [Fet80]. The systems
in which motion is periodic are have a significant importance in physics. For
the case of one degree of freedom, there are two types of periodic motion if
we consider the evolution in the phase space.

1. In the first case, the orbit is closed and the system periodically revis-
its the same point in such space. This type of motion is referred as
libration or also as a oscillatory motion.

2. The second type implies that the generalized momentum p periodically
depends on the generalized coordinate q. This type of motion is gener-
ally defined as a rotation, and in this case q increases indefinitely (for
a conservative system).

A classical example for one degree of freedom is the simple pendulum
with mass m and longitude l. The Hamiltonian of the system is given by:

H(p, θ) = mgl(1− cos(θ)) +
p2

2ml2
(2.33)

2Canonical transformation deal effectively with integrable systems. They corresponds
to a transformation from one set of Hamiltonian coordinates (qA, pA) to another (qB,
pB), and satisfying ∂(qB,pB)/∂(qA,pA) = 1
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which is equal to the total energy E. Here, θ denotes the angle of the
pendulum with respect to the vertical direction and g is the gravity accel-
eration. When the energy of the system is below the maximum potential
energy E < 2mgl, the motion follows an oscillatory pattern. The orbits have
a stable equilibrium point for θ = 0, which is called an elliptic point. When
E > 2mgl the motion of the system is described by a rotation. The limit
value E = 2mgl is a bifurcation point between both types of motion. It is an
unstable equilibrium point (hyperbolic) because all trajectories diverge from
this point.

For either type of periodic motion we can define a new variable named
action and defined in terms of the generalized coordinate and angular mo-
mentum:

I =

∮
pdq (2.34)

In this equation, the integration is conducted over a complete period of
the motion. Let us now consider a generic case of an integrable system.
A canonical transformation from the old variables (p, q) to a new set of
angle action variables, (I, θ), always exists, such that H only depends on
the actions. Hamilton equations in these new coordinates present a specially
simple form

θ̇i =
∂H
∂Ii

= ωi(I)

İi = −∂H
∂θ̇i

= 0 (2.35)

that can be easily integrated giving

θi = ωi(I)t+ δi

Ii = Ii0 (2.36)

where ωi are the N frequencies characterizing the motion.

For an integrable classical mechanical system with N degrees of freedom,
each isolating integral of motion constrains flow of trajectories to a 2N − 1
dimensional surface in the 2N dimensional phase space. The actual flow of
trajectories in phase space lies on the intersection of these N surfaces. Thus,
for integrable systems a given trajectory lies on an N dimensional surface
(the interaction of N surfaces) in the 2N dimensional phase space and every
trajectory is either quasiperiodic or periodic stable.
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2.3 Dynamical Chaos and KAM theory

2.3.1 Non–Integrable Classical Systems. Chaos

As commented in the introduction, Henri Poincaré was one of the first to
discover the deterministic type of chaos. Edward Lorenz referred to chaos as
physical processes that appear to proceed according to chance even though
their behaviour is in fact determined by precise laws [Lor93].

Formally, chaos is defined in terms of the dynamical behavior of pairs of
orbits which initially are close together in phase space. If the orbits move
apart exponentially in any direction in the phase space, the flow is said to be
chaotic, which means that the flow defined by the dynamical system shows
a sensitive dependence on initial conditions. A flow φt : A → A exhibits
such dependence if there is some δ > 0 such that for any x ∈ A and any
neighborhood U(x) there exists y ∈ A and t ≥ 0 so that

‖φt(x)− φt(y)‖ > δ (2.37)

In order to determine the dependence of a dynamical system to initial
conditions, the concept of Lyapunov exponents is commonly used. Lya-
punov exponents are asymptotic measures of the average exponential rate
of divergence of infinitesimally nearby initial conditions. Let us consider a
dynamical system evolving on an n-dimensional phase-space manifold M and
a connected region U → M , such that any orbit starting within it, possibly
after going through a transient, settles onto an attractor. Let us further
assume the dynamics of the continuous-time system to be represented by a
system of first-order ODEs (see equation 2.4) starting from a given initial
condition x0 ∈ U . Then, an infinitesimal displacement along the trajectory
represented by y(t) ∈ Tx(t)M where Tx(t)M is the tangent (linear) space at
the orbit point x(t), evolves according to the following equation:

ẏ = Df(x) · y (2.38)

with Df(x) being the Jacobian matrix evaluated at x(t). The solution to
2.38 can be expressed by:

y(t) = Y (t,x) · y(0) (2.39)

where Y (t,x) is the fundamental matrix of solutions of equation 2.38.
For ease of notation we will simply denote Y (t,x) · y as Yt · y. Then, the
Lyapunov Characteristic Exponent (LCE) of order 1 for an orbit starting at
x and a tangent (deviation) vector y(t) ∈ Tx(t)M is defined as
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Figure 2.1: Graphical representation of phase space foliated by tori.
(Adapted from [Sco14])

χ(x,y) = lim
t→∞

sup
1

t
log‖Yt · y‖ (2.40)

There will be one such exponent for each dimension phase space. If all
the Lyapunov exponents are zero, the dynamical flow is regular. If just one
exponent is positive, the flow will be chaotic.

As stated before, a system with N degrees of freedom is integrable if it
has N independent isolating integrals. In the same way, the systems which
do not fulfill this condition are said to be non–integrable or chaotic.

Non–integrable systems may themselves be divided into two classes. One
class contains the completely chaotic systems such as the Sinai billiard and
the non–circular stadium. Such systems generally have infinite hard convex
surfaces or hard surfaces and irregular shape. The hard surface makes the
Hamiltonian non–smooth. They contain an infinite number of periodic orbits
but they are all unstable. Non–integrable systems with smooth Hamiltonians
comprise the second class of non–integrable system.

The class of mechanical systems that we deal with belongs to the second
class of chaos (smooth chaos). It generally contains a mixture of quasiperiodic
orbits and chaotic orbits, and a mixture of stable and unstable periodic
orbits. Although the motion of these systems is not restricted to tori, it
can in general be very complicated. Chaotic regions occur when isolating
integrals of motion are destroyed locally by nonlinear resonances.
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2.3.2 KAM and Poincaré–Birkhoff Theorems

Between the two extreme cases of the behavior of the dynamical system,
integrable and completely ergodic, there are many intermediate cases. Some
of invariant tori, resonant tori, which affected by the perturbation will be
destroyed, meanwhile the non–resonant ones resist to destroy and continue
as invariant tori. The non–resonant tori which have not been destroyed by
resonances are called KAM tori or KAM surfaces. The KAM theory applies
to a generic Hamiltonian system whose motion is governed by a Hamiltonian
of the form

H = H0 + εH1 (2.41)

where ε is a small parameter controlling the degree of the perturbation. The
zeroth–order Hamiltonian, H0, is an integrable approximation to H, which
has nonzero Hessian and H1 is the perturbation term which for oscillator
systems can be written in terms of action–angle variable as

H1 =
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2(I1, I2)e
i(n1θ1+n2θ2), (2.42)

The KAM theorem (due to Kolmogorov, Arnold and Moser) demonstrates
the continued existence of certain invariant tori as the perturbation param-
eter ε increases from 0, at which the system is considered to be integrable.
When ε 6= 0 the system moves to non–integrability, but in a way which is
explained by this theorem. The tori which are characterized by a ”sufficiently
irrational” frequency ratio, α = ω1/ω2, survive. Such ratio is also referred
as winding number. For a two degrees of freedom system this irrationality
condition is given by ∣∣∣∣ω1

ω2

− n

m

∣∣∣∣ > K(ε)

m5/2
(2.43)

for all integer numbers n and m. K(ε) is a function of the perturbation
which tends to zero as the perturbation disappears. These tori, which are
only distorted by the perturbation, are called KAM tori. The rest of tori
are destroyed, but according to two different mechanisms depending on the
value of α (see figure 2.2).

If α is a rational number (resonant tori), the previous condition does not
hold for any value of the perturbation. The fate of these tori is regulated
by the Poincaré–Birkhoff theorem [Losk07, LeC10], which states that: under
small enough perturbations, an even number of fixed points of the original
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Figure 2.2: Destruction of tori. Source: [Losk07]

torus survive; half of them are elliptic, and the other half are hyperbolic.
The elliptic points are surrounded by new tori (stability islands), some of
them rational, and some of them irrational. Again the rationals and some
of irrationals will be destroyed by the perturbation, according to the KAM
theorem. Then, the previous structure is repeated again and again at a finer
scale.

In the neighborhood of the hyperbolic points (related to the separatrix of
H0) the motion becomes very complex, due to the homoclinic oscillations dis-
covered by Poincaré. The incoming and outcoming manifolds cannot cross,
and then they cross to themselves an infinite number of times. The points
at which they cross are referred as homoclinic, and they form the so called
homoclinic tangle (see figure 2.3). These tangles constitute bands of stochas-
ticity or chaos, which are separated from each other by the intact KAM tori
[Chi79].

Rational Approximates

Each KAM torus has an irrational winding number. For this reason it is
impossible to locate a given KAM torus exactly numerically. Each irrational
number can be approximated by a unique sequence of fractions which con-
verge to the irrational number. Thus the winding number can be presented
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in term of a continued function as follow:

w ≡ [a0, a1, a2, ...] = a0 +
1

a1 + 1
a2+

1
a3+...

, (2.44)

with ai integer and ai ≥ 1 for i ≥ 1. Each rational and irrational number
may be represented uniquely by a sequence [a0, a1, ...]. For irrational num-
bers the sequence will contain an infinite number of entries. The rational
approximates to a given continued fraction are obtained by terminating the
sequence by letting ai = ∞. Thus, for a given sequence, w = [a0, a1, a2, ...],
the rational approximates Ni/Mi, are given by

Ni

Mi

= [a0, a1, ..., ai,∞] (2.45)

The most ”irrational number” is given by the sequence ai = 1 for all i. That
is

[1, 1, 1, ..., 1, ...] ≡ γ =
1

2
(1 +

√
5). (2.46)

The number γ is called the golden mean is considered to be the most irra-
tional number because it is hardest to approximate by rationals. Indeed the
sequence ending in a series of 1’s are the slowest converging sequence and
represent those rational numbers which are the hardest to approximate by
rationals. This has important sequence for dynamics.

It is well known that the KAM tori are destroyed by resonances between
degrees of freedom whose periods are rationally related. Thus, each rational
approximate will be associated to a resonance region in the phase space
and a corresponding island chain. Furthermore, the last KAM torus that is
destroyed has an winding number equal to the aforementioned golden mean.

Cantori

As it is mentioned before, a KAM tori is destroyed when the resonance zones
associated with neighboring periodic orbits begin to squeeze holes in it. The
tori which are not irrational enough according to Eq. 2.43, are also destroyed
by the perturbation. But they turn into invariant ensembles called cantori
[Rad88]. The nature of the cantori is well understood in terms of their
Poincaré surface of section (PSOS, see section §2.4). They are quasiperiodic
orbits, similar to the normal invariant tori, but they are fractal geometrical
objects, with non-integer dimensions, which is a Cantor set, in the PSOS.
Contrary to what happens with the invariant tori, the cantori only represent
partial barriers for the flux of trajectories in phase space [Losk07]. In some
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Figure 2.3: Graphical representation of the Poincaré Homoclinic tangles,
adapted from [Losk07]

sense, they can be considered remnants of regularity, similar to the periodic
orbits, which are embedded in the chaotic part of phase space, imposing some
sort of structure in it.

Systems With More Than Two Degrees Of Freedom

For systems with two degree of freedom, the existence of invariant tori has
a drastic effect in the structure of the phase space. Since two trajectories
cannot cross in phase space, each cantorus divide it into two unconnected
parts. However, for systems with N > 2 this is not true: a hypersurface of N
dimensions (corresponding to an invariant torus of a N–dimensional system)
do not define an inner and an outer regions in a space of 2N - 1 dimensions
(energy shell).

Then, despite the existence of zones of regular motion, the chaotic areas
are interconnected, constituting what is known as the Arnold web, and a
single trajectory can explore the whole chaotic region, giving rise to which is
known as Arnold diffusion.

2.4 Chaos indicators

There are several indicators that can be used for the characterization of the
dynamics of Hamiltonian systems, The most popular one is the Poincaré



2.4. CHAOS INDICATORS 31

Surface of Section (PSOS) which has the limitation of being applicable only
to 2D dynamical systems. This chapter describes this method along with the
SALI coefficient and the Frequency Analysis indicator.

2.4.1 Poincaré Surface of Section (PSOS)

A very convenient way to distinguish between regular (non–chaotic) behavior
and chaotic motion is by looking at a diagram called a Poincaré surface of
section (PSOS), which is used to visualize the structure of phase space in
2D dynamical systems. The PSOS is a representation of the intersection of
a given trajectory with a suitable plane in phase space, taking only those
points for which the plane is crossed in a given direction.

The PSOS defined in this way consists of a sequence of points

(p1(0), q1(0))
T−→ (p1(1), q1(1))

(p1(1), q1(1))
T−→ (p1(2), q1(2))

. . . . . . (2.47)

and the transformation T is a map. For Hamiltonian systems this Poincaré
map is an area preserving map, due to the Liouville theorem.1

In order to visualize the PSOS, let us consider a conservative system. The
Hamiltonian of a conservative system is the isolating integral of the motion
and can be written as

H(q1, q2, p1, p2) = E, (2.48)

where the energy, E, is constant and restricts trajectories to lie on a three
dimension surface embedded in the four dimension of phase space. So that,
one can express one of the variables as a function of the others. For example,
let us take p2 as

p2 = p2(q1, q2, p1, E) (2.49)

It is evident from Eq. 2.49 that p2 depends parametrically on the energy,
E. If the system has more than one spatial dimension, one must take a slice
through phase space (which has twice as many dimensions as the number of
spatial dimensions: i.e. a 2D system has a 4–dimensional phase space) in
order to create a 2D plot

[q1, q2, p1, p2]→ [q1, q2, p1, p2(q1, q2, p1, E)]→ [q1, q2, p1]E, (2.50)

1The Liouville equation is a linear partial differential equation. In non–integrable
classical systems, the evaluation of individual orbits in phase space can be examined using
PSOS. At this level, the chaos can be seen in some regions of phase space. However, if
we were to describe their evolution in terms of the probability distribution in phase space
using the Liouville equation, we would see no chaos.
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Figure 2.4: Graphical representation of the Poincaré Surface of Section.

[q1, p1]E, q2 = cte. (2.51)

If the system has a second isolating integral,

I(q1, q2, p1, E) = I0(= cte.), (2.52)

the Eq. 2.52 can be used for obtaining

I(q1, q2, p1, p2(q1, q2, p1, E)) = I(q1, q2, p1, E) = I0(E), (2.53)

The combination of Eq. 2.52 and Eq. 2.53 gives

p1 = p1(q1, q2, E, I0) (2.54)

If q2=0, then the trajectory lies on a one dimensional curve. By the con-
struction of the PSOS, it will be easy to distinguish between the motion in
the regular regime and the motion in the ergodic regime. The motion in the
regular regime takes place on the surface of a torus, which renders a line in
the PSOS when it is cut by the sectioning plane. On the other hand, in the
ergodic regime, the motion takes place in the 3D energy shell, and then the
successive intersections of the trajectory with the PSOS will fill in an area.

Another important property of the PSOS is that it allows to observe
the appearance of chains of islands. When chaos is present in Hamiltonian
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systems, it is observed that regular motion and chaos regions coexist for
any energy, and that the proportion of chaos increases with energy. This
behaviour is general for any typical Hamiltonian system and can be explained
with the aid of the (previously described) KAM and Poincaré – Birkhoff
theorems.

The global structure of the phase space can be visualized by composite
PSOS, which consists in the superposition, in the same figure, of the PSOS
of a significant ensemble of trajectories calculated with different initial con-
ditions, all of them calculated at the same energy.

2.4.2 The SALI coefficient

The Small Alignment Index (SALI) is a chaos indicator based on the analysis
of the separation of nearby orbits, gauging the behavior of the associated vec-
tors. It is calculated from the integration of Eqs. (2.20), and its applicability
is essentially independent of the dimensionality of the system.

Let us consider a reference trajectory, defined by the system state (col-
umn) vector

z = (q,p)∗, (2.55)

where the asterisk denotes the transpose operation. Hamilton equations of
motion for this variable are written in symplectic form as

dz

dt
= J

∂H(z)

∂z
= J ∇H(z) (2.56)

with

J =

[
0N IN
−IN 0N

]
(2.57)

Let us consider now two nearby trajectories, z1 and z2, as shown in Fig-
ure 2.5. The evolution of the deviation vectors vi = z− zi (i = 1, 2) is given
as

d(z− vi)

dt
= J ∇H(z− vi) (2.58)

Now by Taylor expanding H for small vi and taking Eq. (2.56) into account,
one obtains

d(vi)

dt
= J ∇2H(z)vi (2.59)

Let us point out that all derivatives involved in the above expression can be
analytically evaluated for the HCN model that are used.
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Figure 2.5: Graphical illustration of the calculation of the SALI indicator
[Lop16].
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Then, Eqs. (2.56) and (2.59) are simultaneously propagated for a given
set of initial conditions, thus obtaining both the reference trajectory and the
deviation vectors of the two nearby orbits.

When the dynamics are chaotic in the vicinity of the reference trajectory,
the nearby orbits exponentially diverge, and one of the axes of the rhomboid
formed by the two deviation vectors will quickly go to zero, as time progresses
(see Figure 2.5). The SALI indicator is then defined as [Ege02]

SALI(t) = min (|v̂1 + v̂2| , |v̂1 − v̂2|) (2.60)

where v̂1,2 are unit vectors in the directions of v1,2. It is common practice
to take as the representative value of the SALI(t) for a given trajectory
its maximum in the tail of the orbit. In the case of a chaotic trajectory,
this indicator exponentially decreases in time towards zero, while for regular
orbits it remains close to a fixed value [Beni15].

2.4.3 Frequency analysis

An alternative approach to characterize the behavior of a dynamical system is
the use of the so-called frequency map analysis introduced by Laskar [Xia04],
which has been extensively used in different areas, such as celestial mechan-
ics, [Bay99] highly excited atoms, [Ott90] and vibrational dynamics of small
polyatomic molecules [Boc02, Boc00, Liu11]. This technique provides very
straightforward pictures of the global dynamics of multi-dimensional systems
in the frequency domain.

For each initial condition in phase space, the system frequencies are com-
puted over a finite time span. From it, the fundamental frequency, i.e. that
with the highest amplitude, is retained. In particular, it is first computed as

fj(t) = qj(t) + ipj(t), j = 1, 2, · · · , N (2.61)

with qj(t) and pj(t) being the jth generalized coordinates and momenta at
time t, respectively.

The frequency decomposition of any of the above defined functions over a
finite time interval [−T, T ] can be calculated by means of the Fourier Trans-
form (FT)

f(t) =
∞∑

n=−∞

an e
iπnt/T (2.62)
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to obtain a set of frequencies with a precision of ∼ π/T . To go beyond
this limitation one must resort to a different basis set, using better suited
exponents. For this purpose, the prescription proposed by Laskar [Gao14]
is use herein. A first frequency, ν1, is evaluated by maximizing the scalar
product

φ1(ν) = 〈eiν1t|f(t)〉 (2.63)

where 〈 | 〉 denotes a complex symmetric inner product (not complex con-
jugation!). This procedure is started from an initial guess, obtained with a
standard fast Fourier transform (FFT) method. The other frequencies are
then obtained in a similar way by finding those values of νn maximizing

φn(ν) = 〈eiνnt|fn−1(t)〉 (2.64)

where fn−1(t) are functions obtained by eliminating from f(t) the contribu-
tion of the previously determined frequencies, {ν1, ν2, . . . , νn−1}. Since the
basis set formed by the elements eiνnt is not orthogonal, it is necessary to
carry out a (Gram-Schmidt) orthonormalization procedure. After that, one
finally obtains

f(t) =
∞∑

n=−∞

bn e
iνnt (2.65)

It should also be mentioned that a Hamming window filter, χ(t) = 1 +

cos(πt/T ), is used in the computation of the previous scalar products, in
order to accelerate the convergence. In this way, very accurate, i.e. ∼ T−3,
values for the frequencies, four orders of magnitude more precise than those
rendered by the standard FFT methods, are typically obtained. Afterwards,
the fundamental frequencies in each coordinate, ω1 and ω2 for the case of two
degrees of freedom, are obtained by examination of the results associated to
the largest weights (which consists of the fundamental frequencies plus the
different harmonics and combination bands among them).

When these two frequencies are in a n1 : n2 resonance, condition ω1/ω2 =

n1/n2 is fulfilled. We will denote these resonant frequencies as ω
[n1:n2]
1,2 with

the subindex and superscript identifying, respectively, coordinate and order
of the resonance.

2.4.4 Diffusion coefficient

In the analysis presented in following chapters, we also calculate the local
diffusion strength coefficient, providing an estimation of the local (regular
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or chaotic) behavior of the orbit, by computing along the trajectory the
following expression

D(t) = max

{
∂ω1

∂t
,
∂ω2

∂t

}
(2.66)

That is, for each trajectory, the derivatives of the fundamental frequencies on
each coordinate are obtained numerically using a finite differences procedure,
only retaining that corresponding to the maximum value, as expressed in the
above equation. Here, large values of D correspond to big variations in the
frequencies, and hence to a chaotic behavior, while the opposite happens in
the areas of regular motion.

In this case, and similarly to what is done in the previous subsection
with the SALI indicator, this magnitude is computed for a large number of
trajectories with initial conditions chosen on a fine grid in the corresponding
(q1, p1) PSOS, and plot the corresponding values of D(t) superimposed to
the PSOS points rendered by the trajectory using a suitably defined scale of
colors. In this way, a PSOS colored with D map is obtained, which allows
to characterize the structure of phase space from the point of view of the
local diffusion coefficient, simply analyzing the dynamical properties of single
trajectories.
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Chapter 3

Control theory: mathematical
background

The theory of control is an extensive branch of knowledge that is subject
to constant research and that encompasses many different concepts: linear
control, frequency versus time domain analysis, robust control, estimation
algorithms, optimal control, etc. The available literature in this field is vast,
including innumerable and excellent general reviews (e.g. [Oga10, Bay99,
Kha01]). This section describes some basic concepts which are applied to all
sorts of control systems commonly found in engineering problems.

3.1 Control Concepts

The term control generally refers to the action of bringing a dynamical system
from a certain point in the state space onto the one desired and specified in
the problem. This can include achieving a fixed point in time, or tracking
a particular reference trajectory. In a broader approach, it can also include
the change of its dynamic regime into a desired one, as in the case of part I
of this thesis.

The main elements of a control problem are (see figure 3.1):

• The plant, corresponding to the dynamical system subject to the con-
trol action, which the designer is trying to bring to a certain desired
behaviour or state.

• The sensors, which measure the state of the system in a direct or indi-
rect way (for example measuring a voltage directly linked to a physical
property of the system).

39
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Figure 3.1: Typical control layout

• The actuators, which exert an action on the system (torque, force, heat,
etc.) in order to bring it to the desired state.

• The observer, which estimates the state of the system (or part of it)
based on the measurements provided by the sensors and potentially on
a model of the system’s dynamics.

• The controller, defined as a mathematical expression or algorithm that
computes the action to be applied by the actuators as an input to the
dynamical system in order to lead it to the desired behaviour. Control
design can then be conducted and the available techniques for this
task is very wide : root locus, state-space, Linear-Quadratic Regulator,
robust control, etc.

• The disturbances, which are present in the environment and affect the
dynamics of the system in an undesired but unavoidable way.

• The reference signals or commands, which indicate the desired be-
haviour or trajectory of the system in the state space.

Thus, the general control architecture involves six (possibly vector) sig-
nals of fundamental significance in any control problem. These are the system
state x, the reference signal r, the exogenous disturbances d, the controlled
input u, which is to be provided by the actuators to the plant, the perfor-
mance z of the system which indicates how well the system behaves according
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to a criterion established by the user or designer (and which depends directly
or indirectly in the state of the system), the estimated output y based on
measurements, which provides information of the system’s state and it is
used as an input to the feedback controller.

There are two main types of control systems:

Open loop control The control architecture is such that feedback sensors
are not used, and the control is applied to the actuators by means of
feedforward. This scheme is used for rejection of disturbance when this
can be measured, and also for command following based on model of
the plant. Also the scheme is applied when state of the system cannot
be measured directly or indirectly.

Closed loop control This scheme is the most frequently used, and it is
applied when there are relevant uncertainties in the dynamics or in the
disturbances. In this case, feedback is used to include the estimation of
the state as an input to the controller (as shown in figure 3.1). Stability
issues have to be carefully considered.

For any control problem, it is always very important having a proper
model of the dynamical system. Very often this implies issues in the control
performance (model uncertainties, non-modelled dynamics, etc.). Typically
the model is based on a set of differential equations, or in some cases by
characterizing the frequency response. Often the model relies on linear equa-
tions, which allow a substantial set of tools if the system is also time-invariant
(transfer function in the frequency domain, Nyquist plots, gain and frequency
stability margins, etc). However, the nonlinear part of the dynamics is to be
assessed in case it significantly alters the modelled linear dynamics. In that
case, nonlinear control is meant to deal with those type of systems.

The generic description of linear systems by means of state space equa-
tions is as follows:

ẋ = Ax +Bu,

y = Cx +Du
(3.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector that
includes all control signals, and y ∈ Rl is the output vector, denoting the
signals observed by the sensors. On the other hand, A ∈ Rn×n is the state
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or system matrix, B ∈ Rn×n is the input matrix, C ∈ Rl×n and D ∈ Rl×m

is the feedthrough matrix is the output matrix. In general, those matrices
depend on time, but in the case they are constant, the system is known as
linear time-invariant (LTI).

In general, the setup described above is defined as Multiple-Input Multiple-
Output (MIMO). In many applications there is only one stated being con-
trolled (for example azimuth rotation) by means of a single control signal
(e.g., applied motor torque). In such cases the system is referred as Single-
Input Single-Output (SISO).

Two important elements are typically needed in control engineering: esti-
mation of the dynamical system state and computation and application of a
control action to bring the system to the desired reference value. They have
associated two important definitions:

Observability A system is observable in an interval [t0, t1] if, for an initial state
x(t0), knowing the input u(t) and the output y(t) over the same interval
allows to uniquely determine the initial state x(t0).

Controllability A system is controllable in an interval [t0, t1] if there exists a
control input u(t) such that when applied to the system from an initial
state x(t0), brings the system to the desired state x(t1).

For linear systems, there is a standard test to determine whether a system
is controllable and/or observable [Bay99]. The controllability is checked by
verifying that the controllability matrix P has rank n (being n the size of the
state vector). P is defined as follows:

P = [B AB A2B · · · An−1B] (3.2)

Similarly, a linear system is observable if its observability matrix O is full
rank (rank = n). Matrix O is given by:

O = [C CA CA2 · · · CAn−1]T (3.3)

Here, the matrices A, B and C are as given in (3.8). As commented in
the introduction, such tests becomes intractable for complex networks due to
the size of the associated matrices, and other alternatives have been recently
explored, based on structural control theory [Liu11, Liu16].

Other important concepts in control theory are the following:
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Stability Another key concept in control theory is stability. A controller de-
signed for a dynamical system must ensure that the dynamics of the
overall system is stable. In linear control, this can be ensured for exam-
ple by guaranteeing that the poles of the closed loop transfer function
are in the left half of the complex plane. For nonlinear systems, stabil-
ity is typically checked by means of the Lyapunov theory.

Robustness Besides stability, another key issue is robustness. This is related to
the capability of the control system to ensure stability and performance
despite uncertainty present in the system dynamics not covered in the
model. In the case of linear systems, this is typically ensured by the
gain and phase margins, and in the case of robust control by more
advanced criteria [Zho98].

Optimality Optimal control is also a relevant part of control theory, still being
an important area of research. It is closely related with the calculus
of variations. The goal is to obtain a control action u(t) that reaches
the target system behaviour in an optimal way (for example within a
minimum time, or optimizing the energy expenditure). The concept of
optimality is also extensively treated in game theory (for example by
the search of best response to the opponent strategy) as it is described
in part II of this thesis.

The study of Optimal Control has a formal setup [Bry75] which represents
a generalization of the calculus of variations. If we consider the initial value
problem given by (2.4), and extend it to include the control input, we have

ẋ = f(x(t),u(t), t) and x(t0) = x0 with t0 ≤ t ≤ tf (3.4)

We consider a performance index of the form:

J = φ[x(tf ), tf ] +

∫ tf

t0

L[x(t),u(t), t]dt (3.5)

being φ the terminal performance (cost or payoff, depending on the con-
sidered problem) and L is the running performance during the trajectory
towards the final state. A Hamiltonian is then defined as:

H[x(tf ), tf ] = L[x(t),u(t), t] + λT (t)f(x(t),u(t), t) (3.6)

The solution is obtained by solving the differential equations:
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ẋ = f(x(t),u(t), t),

λ̇ = −(
∂f

∂x
)Tλ− (

∂L

∂x
)Tλ

(3.7)

where we also have:

∂H

∂u
= 0 and initial conditions x(t0) = x0 and λ(tf ) = (

∂φ

∂x
)T (3.8)

The optimal control setup is naturally extended to optimal differential
games [Bre11]. For two players, each controller i optimizes the index function:

Ji = φi[x(tf ), tf ] +

∫ tf

t0

Li[x(t),u1(t),u2(t), t]dt (3.9)

with u1(t) and u2(t) being the control actions at time t of player 1 and
2, respectively, and i = 1 or 2 as applicable.

Robust Control is another branch of control theory that reaches a vast
scope with the research conducted in the last decades [Zho98]. It includes
very important areas such as H∞ optimization theory, µ−synthesis/analysis,
Linear Matrix Inequalities (LMI) tools, Quantitative Feedback Theory (QFT),
etc. Details on this issue are out of the scope addressed here, but some ba-
sic ideas are succinctly presented. As previously mentioned, models of real
systems used for control design have inevitable uncertainties with respect
to actual dynamics and parameter numerical values. The purpose of robust
control is to guarantee stability and performance within a certain range of
uncertainties present in the model. A standard approach followed to tackle
this issue is to introduce the uncertainties as an additional part of the dynam-
ics, considered as external disturbances that are cleverly incorporated in the
overall setup. The problem definition searches for an optimal controller that
minimizes the control error for a maximum value of the uncertainties, while
ensuring also internal stability. This minimax scenario is then defined which
can be interpreted in terms of game theory, the players being respectively
the controller and the external disturbances, where the later can simultane-
ously capture model uncertainty, guidance commands and sensor noise. In
the case of the H∞ theory, the control design incorporates weighting func-
tions that address the specifications in terms of performance, stability, etc.
The analytical solution renders two Ricatti equations to be solved in paral-
lel, and a suboptimal solution is numerically searched. Reduction techniques
are typically followed in order to ensure reasonable controller filter order for
practical implementation purposes.



Chapter 4

Game Theory

Game Theory is the study of optimal decision making under competition
when the decisions of one individual affects the outcome of a situation for
the rest of involved individuals. According to R. Myerson, it is the study of
mathematical models of conflict and cooperation between intelligent rational
decision-makers [Mye91]. The foundations of Game Theory were established
in the first half of the XX century by Oskar Morgenstern, John von Neumann
and John Nash among others. It is a broad discipline that entails tight
interactions with Control Theory, Operation Research, Computer science,
Economics, Biology, Psychology, etc. In this chapter we briefly review some
basic concepts that are used in part III of the thesis. There are several areas
that can be considered within this discipline:

1. Classical Game Theory. The individuals in the game are assumed in-
telligent, rational and selfish. Furthermore, probability is implicit in
the process of the game (either by the players or by the setup of the
game).

2. Combinatorial Game Theory. The difference with the previous one is
that here chance is not a factor in the game (e.g. chess, go, etc.)

3. Modern Game Theory. The players are rational but they also assume in
their behaviour that all players are rational in such a way that they can
coordinate their strategy towards a Nash Equilibrium (NE, see later for
its definition).

4. Dynamic Game Theory. It deals with the analysis of games in which
players must make decisions over time and in which those decisions
influence the result in the next moment in time.

5. Other topics. This includes for example Evolutionary Game Theory.
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The games can be classified in different ways:

1. Zero-sum versus Non-zero-sum. In the first case, the total payoff added
over the whole set of players equals zero, which implies that any player
can only increase its benefit at the expense of others. In the second
option, this is not the case and players can improve their benefit without
necessarily reducing the benefit of others.

2. Strategic games (playing once simultaneously) versus Extensive games
(playing several times sequentially).

3. Symmetric versus Asymmetric Games. In the first case, the payoff for
a strategy is a function of the other available strategies, while in the
second case it also depends on whom is choosing such strategy.

4. Discrete versus Continuous Games. In the first case, a finite number
of players and strategies is considered, while in the second option the
players have at their reach a continuum of strategies to be selected
from.

5. Differential Games. In these games the evolution of the players’ state
variables is governed by differential equations. The problem of find-
ing an optimal strategy in a differential game is closely related to the
Optimal Control Theory. There are two types of strategies which are
already present in Optimal Control: the open-loop strategies are found
using the Pontryagin maximum principle while the closed-loop strate-
gies are found using Bellman’s Dynamic Programming method. Dif-
ferential games are a generalization of optimal control problems where
there is more than one controller or player.

As a formal definition, a game consists of a group of N players P =
p1, p2, ..., pN , where each player i has its own set of possible strategies Si ⊂ S,
S being the set of all available strategies. Each of the strategies available to
player i is called a pure strategy, denoted by sj with j=1,...,ni. On the game,
the player i selects a strategy si ∈ Si. The vector of strategies selected by
the N players is denoted by s=(s1, s2, ..., sN). This vector s ∈ S determines
the outcome for every player.

Another relevant concept in the game definition is the payoff function.
In order to make a decision over the set of strategies, each player needs a
set of preference ordering of the outcomes associated to each vector s. This
ordering must be a complete, transitive and reflexive binary relation on S.
The simplest way to set those preferences is by means of a payoff function
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π : S → RN which assigns to each player a value of the outcome associated
to each vector s of strategies chosen by all the players in the game, including
itself. Each player will chose its strategy si based on such function and the
information (or expectation) of the strategies chosen by the rest of players.
The triple G = (P, S, π) is the definition of a game in a strategic normal
form.

The two-player games given in strategic form are also sometimes called
matrix games, because the payoff function for each player is completely de-
fined by a matrix. If the strategies in Si (i=1,2) for each player are defined
as (s1i , s

2
i , ..., s

ni
i ), there is a matrix Ai ∈ Rn1xn2 so that element (r,c) of

Ai is given by πi(s
r
1, s

c
2). The matrix formulation is used for many discrete

two-players games. Typical examples of those games are prisoners dilemma,
hawk-chicken, etc.

The player i can also choose a mixed strategy vector to which we can
associate a vector xi = [x1i , x

2
i , ..., x

ni
i ] satisfying the following properties:

1. xji ≥ 0 for j=1,..., ni

2.

ni∑
j=1

xji =1

For a game defined in normal form we have the simplex given as:

∆ni
=

{
[x1i , x

2
i , ..., x

ni
i ]T ∈ Rnx1 :

ni∑
j=1

xji = 1;xji ≥ 0, j = 1, ..., ni

}
This set is the mixed strategy space in ni dimensions por player i, and

the mixed strategy space for the game is given by:

∆=∆n1 x ∆n2 x ...x ∆nN

With these considerations, the mixed strategy payoff function for player
i is given by:

Φi(x
1, ..., xN) =

n1∑
i1=1

n2∑
i2=1

...

nN∑
iN=1

πi(s
1
i1
, s2i2 , ..., s

nN
iN

)

A Nash equilibrium [Gri10] is then defined as a tuple of mixed strategies
[x1∗, x2∗, ..., xN∗] ∈ ∆ such that for i=1,...,N:

Φi(x
1∗, ..., xi∗, ..., xN∗) ≥ Φi(x

1∗, ..., xi, ..., xN∗) for all xi ∈ ∆ni
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Figure 4.1: Nash equilibrium and Pareto optima. Adapted from [Bre10]

Another way to explain this concept is that the set of mixed strategies
[x1∗, x2∗, ..., xN∗] constitutes a Nash equilibrium if no player has any reason
to deviate unilaterally from its mixed strategy.

The strategies of two competing players (s∗1,s
∗
2) are said to be Pareto op-

timal if there exist no other pair (s1,s2) such that:

Φ1(s1, s2) > Φ1(s
∗
1, s
∗
2) and Φ2(s1, s2) ≥ Φ2(s

∗
1, s
∗
2) or

Φ1(s1, s2) ≥ Φ1(s
∗
1, s
∗
2) and Φ2(s1, s2) > Φ2(s

∗
1, s
∗
2)

This can be phrased as not being possible to strictly increase the payoff
of one player without strictly decreasing the payoff of the other. In general,
a game can have several Pareto optima. It should be noted also that a Nash
equilibrium many not be a Pareto optimum (see figure 4.1). In that figure,
level curves correspond to the payoff of each of the two player (dashed and
solid lines, respectively). Nash equilibria correspond to points where the
gradient of payoff i with respect to strategy i is zero for both i=1,2, while
Pareto optima render a maximum in the payoff for both players. This is also
observed in the game studied in section §10.4.2.

Although games dynamics often lead to an equilibrium as described above,
it should be remarked that sometimes they rather imply chaotic behaviour
[Sat02]. In the following chapters in Part II, chaos phenomena are extensively
found within the study of the HCN molecule dynamics.



Part II

Control of HCN Molecule via
Laser Excitation
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Chapter 5

HCN molecule and laser
dynamics

5.1 Introduction

One of the most important goals of chemistry is to control the rate and
distribution of products in chemical reactions, minimizing undesirable side
reactions and improving the efficiency of industrial processes [Atk06]. Since
vibrational molecular dynamics play a relevant role in those reactions, they
need to be properly described both at experimental and theoretical level. On
the first point, several techniques have been developed over the last decades
to characterize these phenomena, such as coherent vibrational spectroscopy,
experimental probes of reactive collisions, spectroscopic observation of ac-
tivated complexes, etc [Atk06, Silv08]. On the other hand, theoretical ex-
planation of the processes undergoing molecular dynamics is of paramount
importance for a complete comprehension of such phenomena. For this rea-
son, since the last quarter of the 20th century classical mechanics has seen
an unprecedented popularity among chemical physicists, for whom the main
concern is the investigation of molecular motions and transformation. One
of the main factors for the adoption of the classical mechanics approximation
(which describes the motions of macroscopic bodies) in chemical dynamics
is the ability to perform calculations for many body problems, and to ob-
tain results in good agreement with the experiment. Vibrational spectrum is
considered the fingerprint of the nuclear motions in the molecule. Classical
mechanics offer important tools not only for qualitative answers, but also
with a predictive power for the motions of the polyatomic molecules at high
energies where nonlinear effects are strong.

The theoretical framework for this kind of studies is based both on classi-
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cal and quantum mechanics, having profound roots in the characterization of
chaos in Hamiltonian systems and KAM theory that have been described in
chapter §2. The hierarchical organization of phase space described there en-
tails a high relevance when considering intramolecular vibrational relaxation
(IVR) in small molecules [Gru00, Gru04, Lei05], an issue of outmost impor-
tance to the potential development of a mode-specific chemistry [Blo84].

One topic of much interest in this branch of chemical dynamics is the
active control of molecular nonlinear dynamical systems and chemical re-
activity, typically using lasers. An extensive literature has been produced
on this subject (see [Ric00, Ban02, Rab03, Sha03, Sha03] and the references
therein). In relation to the work presented here with the HCN molecule, the
laser control of bond excitation, bond dissociation (typically of the strong CN
bond), and the isomerization of HCN has been extensively considered in the
literature [Brez04, Set12, Che91, Che96, Bot95, Has02, Gong05a, Gong05b].
Also, other alternative methods of control in this molecule not making use of
lasers has been recently explored [Gong05a, Gong05b]. The work in [Brez04]
and [Set12] is most relevant for the present study.

In the first paper, Brezina and Liu[Brez04] considered the possibility of
controlling the CH and CN excitation and and dissociation with laser pulses.
For this purpose, they used a classical mechanics widespread vibrational
model consisting of two kinetically coupled Morse bond functions freezing
the bending at its equilibrium value [Jaf80, Sib82, Dav81]. Special attention
was paid to the role played by IVR, considering different values of the laser
frequency and amplitude. These authors found that simple linearly chirped
pulses are effective in exciting and dissociating the CH, while this is more
difficult for the stronger CN bond.

Subsequently, Sethi and Keshavamurthy [Set12] revisited the same prob-
lem, concentrating only in one of the laser frequencies considered by Brezina
and Liu. This work was a start in the identification of the main aspects of
the dissociation dynamics and mechanism in phase space, and the character-
ization of the system in terms of the classical dynamical resonances (Arnold)
network. They found the importance of two regions of frequency space, which
were called dissociation hub (DH) and noble hub (NH), respectively. The
former constitutes a ’gateway’ for those trajectories leading to dissociation,
while the later, characterized by very irrational frequency ratios, constitutes
a very sticky area where trajectories are trapped for a considerable time,
being the most visited region in the web.

This thesis extends the analysis of Sethi and Keshavamurthy for the HCN
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NCH

re
CH re

CN

q1 q2

Figure 5.1: HCN molecule vibrational dynamics stretching degrees of freedom

molecule, by considering the influence of the laser frequency in the dynamics,
in order to check the possibility of using it as a possible control parameter by
varying the dynamical structure of the system. In this way, we can be more
precise than previous works in predicting which laser frequencies are best in
order to promote dissociation. Indeed, in Ref. [Brez04] it was inferred from
the dissociation yield versus laser frequency plot that the important reso-
nance was with the harmonic bond frequencies dissociation. Actually, Sethi
and Keshavamurthy [Set12] chose to be out of this resonance to perform their
study in order to avoid significant participation of the CN dynamics. While
this resonance assumption is true at low energies, in this thesis it is found
that the most important frequencies for the CH excitation and dissociation
are those associated to regular motions, and that changes significantly with
the excitation of the HCN. The detailed characterization has been carried
out both in the phase and frequency spaces. Let us remark, that this is not
an easy task from the theoretical point of view, since the dynamical problem
consists in more than two degrees of freedom [Simo99].

5.2 The HCN vibrational model

The molecule under study is HCN. It is known to have two stable linear
isomers, being H–C–N the most stable one [Var06, Arr10]. Taking this fact
into account, and also that the bending motion has a much lower frequency
than the stretching, the linear configuration is frozen here, using a minimal
2D linear model consisting only of the two stretching modes, rCH and rCN,
respectively. Coordinates relative to their equilibrium values, q1 = rCH− reCH

and q2 = rCN − reCN, will be used instead (see figure 5.1). Also, and due to
the relatively high energies that are going to be considered, quantum effects
such as tunnelling are not expected to play a significant role in the present
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Figure 5.2: Morse potential energy versus separation between atoms, com-
pared with harmonic potential for reference

study.

The resulting dynamics are described by a classical Hamiltonian, H0,
which has been previously used in other studies of IVR [Jaf80, Sib82]. An
additional term, HI , associated to the actuation of a monochromatic laser,
is introduced, and thus, the description of the whole system is given by

H(t) = H0 +HI = T + V +HI(t), (5.1)

where the kinetic energy term, T , is

T =
p21

2MCH

+
p22

2MCN

− p1p2
mC

, (5.2)

where MCH = mCmH/(mC +mH) and MCN = mCmN/(mC +mN) denote the
associated reduced masses.

The potential energy, V , consists of two uncoupled Morse functions

V = D1

(
1− e−α1q1

)2
+D2

(
1− e−α2q2

)2
, (5.3)

where D1 and D2 are the CH and CN dissociation energies, and α1 and
α2 constants related to the CH and CN harmonic vibrational frequencies.
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Coordinate
1 (CH) 2 (CN)

D 0.209 0.404
α 1.554 1.940
re 2.014 2.179

Table 5.1: Numerical values for the parameters in the potential of this
Hamiltonian model for HCN in Eq. (5.3) for the two relative coordinates
q1 = rCH− reCH and q2 = rCN− reCN. They have been taken from Ref. [Far09]
and are given in a.u.

Figure 5.2 depicts the potential energy corresponding to the Morse function,
and its relation to a harmonic oscillator. It can be observed that at a certain
energy level the internuclear separation tends to increase eventually leading
to molecule dissociation.

The numerical values for the parameters entering in Eq. (5.3) have been
taken from Ref. [Far09], and are summarized in Table 5.1. Atomic units will
be used henceforth unless stated otherwise.

The interaction with the laser, HI(t), is described within the dipole ap-
proximation as

HI = λF µ(q1) cosωF t (5.4)

being ωF the frequency of the laser field, λF its amplitude, and µ(q1) the
HCN dipole function, which in our case is approximated as

µ(q1) = e−η(q1+r
e
CH)

4∑
j=1

Aj(q1 + reCH)j (5.5)

being η = 1 bohr−1, and Aj additional parameters whose values can be
found in Ref. [Set12]. In this way, the system is non-autonomous and the
motion, therefore, evolves in the five-dimensional space, so that the system
is sometimes referred to as a system of 2.5 degrees of freedom.

The potential energy surface is shown in Figure 5.3 in the form of a con-
tour plot. As can be seen, it presents a well V = 0 at (q1, q2) = (0, 0)
corresponding to the Li–C–N isomer linear equilibrium configuration, and
the equipotential lines pack close together at the dissociation of the Morse
functions in both modes, V = D1 at (0,∞), and V = D2 at (∞, 0), respec-
tively.
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q1

q 2

Figure 5.3: Contour plot of the HCN potential energy surface defined in
Eq. (5.3) using the parameters of Table 5.1.

It should be noted that the molecule vibrational dynamics described here
corresponds to the plant of the system to be controlled according to the
definition in section §3. In this case, the laser is the actuator in the referred
scheme, while the algorithm selecting the laser frequency corresponds to the
controller. Since there is no sensor here to measure the dynamics regime and
to close the loop, the whole setup acts as an open loop control system. In the
following chapters, the rationale for the actuation of the laser in the control
of the molecule vibrational dynamics is described in depth.



Chapter 6

HCN control results

6.1 HCN molecule without laser interaction

In this thesis the presentation of results of the conducted analysis starts by
considering first the dynamics of the HCN without laser excitation, in order
to obtain a reference for comparison with the results in subsequent chapters,
in which the effects of the field on the molecule are examined. One key
parameter in this study is the energy of the system, which plays the role
of a perturbation, in the sense of the KAM theorem. Notice that in this
case increasing the value of E not only represents a perturbation, but it has
also the effect of open access to larger portions of phase space, this bringing
about eventual new dynamical structures, such as for example those arising
in bifurcations.

6.1.1 Classical trajectories and Poincaré surfaces of
section

Classical trajectories for this Hamiltonian model of HCN are calculated by
numerical integration of the corresponding Hamilton equations of motion (see
Eqs. 2.21) where in this case (q,p) = (q1, q2, p1, p2) . The results presented in
this thesis are obtained by using the symplectic algorithm defined by Störmer-
Verlet [Hai03] for the propagation of the trajectories. The use of this prevents
any eventual energy drifting induced by the numerical integration procedure.

In the case that there is no interaction of the molecule with the laser,
the Hamiltonian H = H0, does not depends explicitly on time, and then
the system is two dimensional. Then, the corresponding dynamics can be
conveniently monitored by computing composite Poincaré surfaces of section
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(PSOS) at different values of the vibrational energy. This implies the defi-
nition of a Poincaré map consisting on the transversal intersection points of
many trajectories, all computed at the same value of the energy, with a suit-
ably defined codimension 2 hypersurface, C, this reducing the dimensionality
of the phase space flow to 3D. Accordingly, a periodic trajectory in the phase
plane corresponds to a finite number of dots in the PSOS, while quasiperiodic
orbits lying on invariant tori are represented by closed curves in the PSOS.
(Notice that they constitute impenetrable barriers for the flux of trajectories
across.)

For the case of the HCN model that are considered we take C : q2 = 0, p2 >
0 as the sectioning plane, thus obtaining the corresponding (q1, p1) PSOS. As
explained in section §5.2, when the interaction with the laser is taken into
account the dimensionality of the system increases to 2.5 dimensions and
the above described rationale no longer holds, since the invariant tori do not
partition the phase space into distinct and unconnected regions. Alternative
indicators, such as those described in the next subsections, should then be
used.

Figure 6.1 depicts some composite PSOSs, as defined in Sect. §6.1.1,
for the model of the isolated HCN molecule. From (a) to (c) three values
of the vibrational energy are considered, namely E = 0.1, 0.135 and 0.21
respectively. In each plot a uniform grid of 10,000 initial conditions within the
available PSOS was used as starting points to propagate the corresponding
trajectories for 8192 steps of size ∆t = 4, resulting in a total time span of
32768, which corresponds to 0.8 ps. For each trajectory ∼1000 intersections
with the SOS were recorded and plot in the different panels. The same
numerical values of the parameters will be used in the rest of the calculations
of this thesis, unless otherwise stated.

As can be seen, for the lowest energy considered, E = 0.1, the system is
mostly regular, and only invariant (KAM) tori and PB chains of islands are
visible. For example, two main elliptic points can be observed in panel (a), at
(q1, p1) = (0.55,−10.59) and (−0.075, 5), respectively. They are associated
to the primary resonance, ω1 : ω2 = 1 : 1. The first one corresponds to the
asymmetric normal mode trajectory (see discussion in [Jaf80, Sib82, Dav81]),
while the second is mainly a slightly distorted C-H local mode trajectory.
Moreover, a chain of 5 islands around the first fixed point, corresponding
to a 1:5 secondary resonance, is also observed. And similarly, two more
chains of islands are visible around the second fixed point, corresponding
to 1:3 and 1:4 secondary resonances. For E = 0.135 [Figure 6.1(b)] the
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Figure 6.1: Composite Poincaré surfaces of section, as defined in Sub-
sect. §6.1.1, corresponding to intersections with the plane q2 = 0 with p2 > 0
for the HCN molecule without interaction with the laser at E = 0.1 (a), 0.135
(b), and 0.21 (c). Four representative trajectories, marked A–D in panel (b),
are analyzed in the text. (Atomic units are used in all figures of this thesis.)
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Table 6.1: Initial conditions on the PSOS for the four trajectories of HCN at
E = 0.135 marked A–D and colors black-blue-green-red in Figure 6.1, which
are representative of regions of the phase space with different dynamical
character (this being indicated in the last column).

Trajectory q01 p01 Phase space region
A 0.74 –9.13 1:1 resonance
B –0.036 9.49 3:2 resonance
C 0.09 8.26 torus around

3:2 resonance
D 1.01 10.00 Chaotic region

perturbation grows. However, the broad region of regularity around the first
1:1 resonance, located in the lower right part of the plot, as well as the 1:5
chain of island structure around it, mostly survive. On the other hand, the
second region of regularity, located in the upper left part of the figure, has
suffered more profound changes. Actually, a pitchfork bifurcation has taken
place, turning the central elliptic point into unstable, with the simultaneous
emergence of a resonance region around. This new region consists of two new
elliptic points corresponding to a 3:2 resonance (as it will be explained in more
detail below). Also, a vast region around this structure, that was regular at
E = 0.1, has become chaotic. As a consequence, from the two prominent
1:3 and 1:4 secondary resonances clearly visible at E = 0.1 only remnants
of the former now persist. Finally, in Figure 6.1(c), corresponding to E =
0.21, the vast majority of phase space is dominated by chaotic behavior.
The two main regular regions described before have been greatly reduced in
size, corresponding to motions around the equilibrium point, (q1, p1) = (0, 0)
and around (q1, p1) = (1.08,−8), respectively. Nevertheless two very small
island of regularity are visible around (q1, p1) = (0.5,−5.0) and (q1, p1) =
(1.65, 12.3).

To further continue the investigation of the phase space of HCN with-
out the laser, let us examine next some representative trajectories in these
PSOS’s. For this purpose, four trajectories have been chosen at the interme-
diate energy E = 0.135 (very close to that used in Ref. [Set12]), since the
other two cases considered in Figure 6.1 are either too regular or too chaotic.
These trajectories have been marked with the letters A–D and colors black-
blue-green-red in Figure 6.1(b), and their numerical initial conditions (in the
PSOS) and dynamical character of the phase space regions in which they
are located have been summarized in Table 6.1. The corresponding orbits
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and PSOS are shown in the top and bottom rows, respectively, of Figure 6.2
using the same colors as in Figure 6.1. As can be observed, trajectory A (left
tier) corresponds to a asymmetric normal mode 1:1 resonance with values of

the frequencies at this resonance equal to ω
[1:1]
1 = ω

[1:1]
2 = 0.012371. Trajec-

tories B and C are located in the region associated to the bifurcated (mainly
C-H local mode) 3:2 resonance. The former corresponds to the stable new
periodic orbit oscillating three times in q1 while repeating only twice in q2,
in a Lissajous-like pattern. The corresponding two fundamental frequencies
have been computed using the method of Laskar (see Subsect. §2.4.3) result-

ing in ω
[3:2]
1 = 0.005 and ω

[3:2]
2 = 0.00333, which are very approximately in

the expected 3/2 ratio. On the other hand, trajectory C corresponds to a
quasiperiodic motion (torus) around the whole structure born in the pitch-
fork bifurcation described above. This orbit has been plotted (in green) in
the middle tier of Figure 6.2 superimposed to B (in blue). As can be seen, it
presents a box-filling type of orbit, wiggling around the 3:2 resonance, thus
revealing the irrational frequency ratio dominating that area of phase space.
This is even more apparent in the bottom plot, where the corresponding

q 2
P
1

q1

Figure 6.2: Trajectories A (left tier), B and C (middle tier), and D (right
tier) for the HCN molecule without interaction with the laser marked in
Figure 6.1. The top row plots show the orbits in configuration space, while
those at the bottom corresponds to Poincaré surfaces of sections.
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PSOSs are presented. Finally, trajectory D corresponds clearly to an irreg-
ular orbit, filling the chaoticity band where its initial condition was chosen.
It can also be observed that its evolution in the PSOS is consistent with
the areas marked as chaotic in the SALI map discussed in Figure 6.3 below.
In subsequent sections of this thesis, these four trajectories will be used as
reference cases for a further characterization in the presence of the laser field.

6.1.2 SALI indicator and diffusion coefficients

This subsection presents results corresponding to PSOS colored with SALI
and diffusion coefficient D maps, (as defined in Subsects. §2.4.2 and §2.4.3
respectively) for the vibrational dynamics of HCN at E = 0.135 without
interaction with the laser. Accordingly, they should be compared with those
in Figure 6.1(b). The reason for this choice of the energy value is threefold.
First, at this energy there is no dissociation when the laser is off. Second,
the fraction of chaotic trajectories, which are the most likely candidates for
dissociation, is relatively large. Third, it has two sizable regular regions corre-
sponding to different dynamical characteristics (order of the main resonance
in the region).

The results, computed using the same numerical parameters of the previ-
ous subsection, are presented in Figure 6.3. The logarithmic scales of colors
used to code the numerical obtained values are given in the right part of the
plots. As can be seen, the SALI map [panel (a)] shows, as a priori expected,
a remarkable resemblance with the PSOS in Figure 6.1(b), with all areas of
regularity appearing in pale colors. Indeed, even the existing PB structures
are clearly delineated by the existence of darker tones. The areas of chaos,
also appear in darker colors, but even here a tonality variation is found, this
indicating the existence of different types of chaotic behavior in the system
[Beni15].

Furthermore, Figure 6.3(b) shows the corresponding diffusion coefficient
map. Recall that here the color scale should be represented in an inverted
way, since larger values of D correspond to chaos. Similarly to the case of the
SALI indicator in the panel (a), this map is informative and useful, but the
resemblance with the PSOS and the number of different details that can be
appreciated is lower. Regular areas, regions of stochasticity, and even much
of the detail of the PB structures are clearly visible, however.
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6.2 HCN molecule interacting with laser

The previous section discussed different aspects of the vibrational dynamics
of the model for HCN when there is no interaction with a laser. The rest of

P
1

q1

(a)

(b)

Figure 6.3: SALI (a) and diffusion coefficient (b) colored PSOS maps, as
defined in Subsects. §2.4.2 and C, for the HCN molecule without interaction
with the laser, for E = 0.135 [this corresponding to Figure 6.1(b)]. Values
are shown using the color code given on a logarithmic scale at the right of
the plots.
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the chapter is devoted to study the influence of a laser radiation field on this
dynamics, paying special attention to the effect of the laser frequency. A fixed
value of the amplitude of the laser field, equal to λF = 0.009 corresponding
to ' 3 TW/cm2 (the same value as that considered in Ref. [Set12]), will be
used throughout. On the other hand, the laser frequency, ωF , will be varied,
and six particular values of it will be considered, except in Figure 6.8, where
a larger number of frequencies is studied.

As commented in chapter §5, in this system the actuator of the control
scheme corresponds to the laser exciting the molecule vibrational dynam-
ics. The system controller is represented by the strategy in the selection of
the laser frequency, whose physical justification is provided in the following
sections.

6.2.1 SALI indicator

Let us first focus on the sensitivity of the SALI index to the laser frequency;
other features will be considered afterwards. The same scheme will be fol-
lowed in other subsections.

When the effect of the laser is considered, the resonances in the system are
more complex, since now the frequency of the laser, ωF , must also be included
in the discussion. Also, some care should be paid to the notation. In this
case, the standard vectorial notation will be used, in which fulfillment of the
resonance condition: n1ω1 + n2ω2 + nFωF = 0 is abbreviated as (n1, n2, nF )
for short. In this way, the previously introduced resonances without the laser,
n1 : n2, will be denoted hereafter as (n2,−n1, 0).

Figure 6.4 presents the results of the SALI colored PSOS map for increas-
ing values of laser frequency. These values have been carefully chosen in a
dynamical sense, as described when the results in each panel are discussed
below. The initial energy without the interaction with the laser, i.e. that
corresponding to H0 in Eq. (5.1), is taken in all cases equal to E0 = 0.135,
which is the same one as in Figure 3(b).

A first comment regarding Figure 6.4 is in order. As can be seen, as the
value of the laser frequency increases the structure of the associated phase
space changes. The region corresponding to the 1:1 resonance is the most
robust one, and its structure changes little under the effect of the laser;
however, the area of influence of this resonances decreases with ωF . Another
interesting observation is that the region corresponding to the 3:2 resonance



6.2. HCN MOLECULE INTERACTING WITH LASER 65

first disappears as ωF increases, but then it reappears for the highest values
of this parameter. Let us consider this striking effect in more detail.

P
1

q1

Figure 6.4: SALI colored Poincaré surface of section map, as defined in
Subsect. §2.4.2,for HCN in the presence of a laser with the following values
of the frequency: ωF = 0.003333 (a), 0.004123 (b), 0.009278 (c), 0.010000
(d), 0.014430 (e), and 0.018556 (f), respectively. In all cases the initial energy
without the interaction with the laser is taken equal to E0 = 0.135.
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In panel (a), we have that ωF = ω
[3:2]
2 = 0.003333, i.e. the laser is in an

integer resonance with the dynamics in the 3 : 2 area of influence. Despite
the existence of this resonance, the effect of the laser is very small, and then
the structure of the phase space is not largely altered, as can be ascertain by
comparing panels (a) in Figs. 6.3 and 6.4. This persistence is due to the fact
that the value of the laser frequency/perturbation is very small, and then
many tori survive according the prescription of the KAM theorem [Ber78].

In panels (b) and (c) we have that the value of the laser frequency, and
then its effect in the HCN dynamics, has increased. As a result, more tori
that in the previous case are destroyed. This is even true for the robust
1:1 resonance zone, since now we have that ωF = (1/3) ω

[1:1]
1,2 and ωF =

(3/4) ω
[1:1]
1,2 , respectively for panels (b) and (c). Also, it should be remarked

that although the region corresponding to the 3:2 resonance appears highly
destroyed, this is not so much the case, since when the actual numerical
values of the SALI are carefully examined they are seen to be not too small.

The situation is completely different in panel (d), where the 3:2 region
appears totally destroyed, while the size and regularity of the 1:1 has largely
increased. The first observation is in agreement with the fact that the pertur-
bation has increased, but by the same token the second is totally unexpected.
This result can be understood if we take into account the dynamical rela-
tionships existing between the different motions. In this case, one has that
ωF = 2 ω

[3:2]
1 = (γ/2) ω

[1:1]
1,2 , being γ = (1 +

√
5)/2 the golden mean. The

first relation enhances the destruction of tori in the first region, while the
(very irrational) second prevents the destruction of the second. Moreover,
the colors corresponding to the SALI indicates that the destruction of the
3:2 area is very high.

This balance of larger or smaller destruction of regular tori as a function
of the irrationality of the ratio between laser and vibrational frequencies of
the isolated molecule is also very well illustrated in the remaining panels of
the figure. In panel (e), ωF = (7/6) ω

[1:1]
1,2 = (7/γ) ω

[3:2]
2 . As a result, now

the 1:1 region appears much destroyed than before, while the irrational ratio
with the 3:2 resonance ensures the revival of the corresponding region that
it is seen in the results. The situation is totally similar in panel (f), where

ωF = (3/2) ω
[1:1]
1,2 = (9/γ) ω

[3:2]
2 .

6.2.2 Frequency map analysis

The structure of nonlinear resonances in phase space, such as the one just dis-
cussed for the HCN vibrational dynamics in the presence of a laser, does also
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appear usually clearly displayed in the maps derived from frequency analysis
[Las92, Dum93, Los98]. With this motivation in mind, we will use now the
procedure described in Sect. §2.4.3 to compute frequency maps to present an
alternative, but nevertheless complementary, analysis to the results discussed
in the previous subsection.

Accordingly, Figure 6.5 presents computations for the ratio between the
two fundamental frequencies, ω1 and ω2, and the laser frequency, ωF , for the
same set of trajectories in the grids of the different panels in Figure 6.4. For
comparison, each of these points is painted with the color of the corresponding
SALI parameter, using the color scale indicated in the right part of the
figure. Additionally, in the different plots of the figure it is included three
straight lines corresponding to the resonance conditions (1, 0, γ/2), (1,−1, 0),
and (2,−3, γ). Actually, the first one indicates an irrational frequency ratio
between mode CH and the laser; in the second one, modes CH and CN are
in a 1:1 resonance; and finally, in the third line there is an irrational ratio
between the laser and the 3:2 molecular resonance. These lines correspond to
invariant tori, typical of the Arnold web, separating the available frequency
space in different relevant zones where the trajectories accumulate.

Two previous comments regarding Figure 6.5 are in order. For one thing,
it seems at first sight that now the number of points in the different plots
of the figure has been reduced with respect to those in Figure 6.4. However,
this is not the case at all, and the apparent reduction is just a visual effect
due to the fact that several trajectories may now have very similar funda-
mental frequencies. Second, notice that although the structure in the panels
is (more or less) conserved, the corresponding region in the frequency space
are significantly changing. This is due to the fact that the axis presents the
values of the frequencies ω1 and ω2 scaled with respect to the value of the
laser frequency, which is different in each panel.

Now, let us discuss the results in the different panels of Figure 6.5. For
the smallest value of the laser frequency, in panel (a) it is observed that the
calculated points cluster in four different groups. The first two are located
in the upper part of the plot, close to the value ω2/ωF ' 1, respectively on
the (1,−1, 0) and (2,−3, γ) resonance lines. As can be seen by the color
indicating the value of the SALI they are all regular trajectories, the first
group being associated to the 1:1 resonance region and the second one to
3:2 [see Figs. 6.1(b) and 6.4(a)]. The other two groups of points, appear re-
spectively on the (1, 0, γ/2) and (slightly) to the right of the (2,−3, γ) lines,
respectively. They correspond to chaotic motion, as inferred from the SALI
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Figure 6.5: Frequency map, as defined in Subsect. §2.4.3, for the vibrational
dynamics of HCN interacting with a laser, using the same parameter values
as in Figure 6.4. For comparison purposes, it is also indicated the value
of the SALI coefficient corresponding to each of trajectory using the same
color scale as in Figure 6.4. To help in the discussion three straight lines,
corresponding to the resonance conditions (1, 0, γ/2) (pink), (1,−1, 0) (red),
and (2,−3, γ) (black), have been plotted superimposed.
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values, around the same two molecular resonances, 1:1 and 3:2. Moreover,
the later region corresponds to what Sethi and Keshavamurthy called the NH
in Ref. [Set12], while the vicinity of the former would be the DH, although
as can be seen no dissociating trajectories (that should appear on the ω1 = 0
line) are observed at this value of ωF . When the laser frequency is increased,
in panels (b) and (c), the results obtained are very similar, and only a small
increment in the dispersion of the data, indicating a growth of the available
frequency space, is observed. Two new facts are, however, worth mentioning.
First, same points on the (1, 0, γ/2) line drift to the left, i.e. to smaller values
of ω1/ωF . Second, a few points appear at ω1 = 0 indicating dissociation of
the CH bond. The situation is completely different in panel (d). Here, the
number of dissociating trajectories increases significantly. The dispersion and
drift to the left of the points over the (1, 0, γ/2) line largely increases, and
the regular trajectories, i.e. points in light colors, at ω2/ωF ' 1 still persists.
Also, the resonant line (1,−1, 0) seems to constitute a strong barrier, or bot-
tleneck for IVR, separating the DH from the rest of regions in the frequency
space. This tendency continues in panels (e) and (f) as the frequency of the
laser is increased, and the same comments made above also apply here.

To conclude this subsection, let us now discuss how the conclusions drawn
from the results of Figure 6.5 translate into phase space. For this purpose, a
more precise definition of the NH and the DH hubs is needed. In this case, it is
considered that a trajectory belongs to the NH when it is below the (2,−3, γ)
line, while trajectories in the DH are taken as those with ω1/ωF < 3/4.
The corresponding analysis is shown pictorially in Figure 6.6, where the
trajectories (initial conditions over the PSOS) contained in the NH and DH
are plotted in blue and brown, respectively. As can be seen, the NH points
cluster in the 3:2 resonance zone, this being a further confirmation of the
conclusion drawn previously in connection with the results of Figure 6.5.
However, this region is also filled with DH trajectories (brown points) for
ωF = 0.010000 [panel (d)], since at this value the laser is in resonance with
the 3:2 molecular motion. Notice how this region is avoided by the same class
of trajectories for the rest of values of the laser frequency (panels). These
trajectories fulfill the chaotic region, result which is also inferred from the
SALI values (dark colors) in Figure 6.4.

6.2.3 Molecular dissociation and chaotic dynamics

The main conclusion of the previous subsection is that resonance (1,−1, 0)
constitutes a robust bottleneck dividing the frequency space of the HCN in
the presence of a laser into two different regions, namely the NH and the DH,
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Figure 6.6: Phase space picture of the trajectories (initial conditions rep-
resented over the Poincaré surface of section) in the noble (blue dots), and
dissociation hubs (brown dots) for the vibrational dynamics of HCN inter-
acting with a laser, using the same parameter values as in Figure 6.4.
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being the later formed by a mixture of chaotic and dissociating trajectories.
Let us examine now in more detail this region.

For this purpose, the previous calculations have been up to a much longer
time than that used in the frequency analysis, in order to allow for a proper
assessment of the dissociation process. Trajectories will then be considered
dissociative when the displacement in the bond of interest exceeds a certain
threshold, which are set here to 15 a.u. for the CH bond. The corresponding
results are shown in Figure 6.7 where the dissociation times are shown in a
color scale for the same laser frequencies considered before. Several comments
are in order.

In the first place, it can be observed that the laser is not able to dissociate
the molecule until a value of ωF = 0.009278 [panel (c)]. Second, by comparing
the results in Figure 6.7 with those in Figure 6.6, it can be concluded that
in all cases the dissociating trajectories correspond to initial conditions in
the DH. Moreover, all the dissociative trajectories present a large degree of
chaoticity, as assessed by the SALI value, given in Figure 6.4. Third, it
can be noticed that trajectories in the NH and the 1:1 resonance zone do
not lead to dissociation. And fourth, notice how dissociation also reflects
the fact that when the laser frequency is ωF = 0.010000 [panel (d)] the
resonance with the 3:2 vibrational molecular motion destroys the regularity
in this region. Notice that the lapse of time in which the dissociation takes
place has nothing to do with the fact that the initial value of p1 is small
or large, since in the corresponding region the dynamics is very chaotic and
the values of the coordinates may change quickly. For example, consider in
Figure 9 (f) the region near (p1 = 0; q1 ≈ 0.75), where the frequency ratio
indicates that it belongs to the dissociation hub, where the escape is very
fast.

To obtain a clearer idea of the dependence of dissociation on the laser
frequency, this subsection is finished by presenting in Figure 6.8 the fraction
of dissociative and chaotic trajectories for a number of frequency values much
larger than those considered in the analysis of Figs. 6.4 and 6.7. These
results are computed by considering that a trajectory is chaotic when its
SALI coefficient is smaller than 10−5.

As can be seen, there is no dissociation (black circles) until the laser fre-
quency reaches 0.009. This threshold value, which depends on the laser inten-
sity (recall that in this work only one value of this parameter is considered),
is in good agreement with the result of Brezina and Liu [Brez04], despite the
fact that the present representation of the dipole is much simpler that the
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Figure 6.7: Dissociation times for the vibrational dynamics of HCN interact-
ing with a laser, using the same parameter values as in Figure 6.4. White
dots indicate initial conditions not leading to dissociation. The color scale is
represented in units of 103 a.u. of time.
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one used by those authors. Beyond the threshold, the fraction of dissociative
trajectories presents two peaks, at ωF = 0.018556 and 0.022266, respectively,
with a minimum in between for 0.020000. These values correspond, respec-
tively to the integer frequencies ωF = (3/2) ω

[1:1]
1,2 , ωF = (9/5) ω

[1:1]
1,2 , and the

noble ratio ωF = γ ω
[1:1]
1,2 , respectively.

With respect to the fraction of chaotic trajectories (blue circles), it can be
observed that for ωF > 0.009 the curve follows the same behavior as that for
dissociation. Below that value, the curve presents a numerous series of peaks
and valleys, that can always be associated with laser-molecule resonances,
as labeled in the figure, being those resonances of integer oder for the peaks
and of noble ratios for the valleys.

From a dynamical point of view, Figure 6.8 can be seen as summarizing
the balance of larger or smaller destruction of regular tori as a function of
the irrationality of the ratio between laser and vibrational frequencies of the
isolated molecule, as stated at the end of Sect. §6.2.1, since the effect of the
laser is different for the two regular regions around the 1:1 and 3:2 HCN
resonances. When ωF is in resonance with any of the associated frequencies
(see labels at the top of graph in the figure) the corresponding fraction of
destroyed tori increases. For example, there is near ωF = 0.0023 a small peak
encircled in red indicating that when ωF = (2/3) ω

[3:2]
2 part of the regular

3:2 region turns chaotic. This effect is, however, much larger when the laser
is in resonance with the motion in the 1:1 region 1:1, as for example at the
nearby frequency where ωF = (1/3) ω

[1:1]
1,2 .

Concerning dissociation, it can be observed for example that for ωF =
0.010000 there is a small peak of dissociating trajectories that coincides with
a minimum in the chaotic fraction. Again, this is explained in a similar way
as before, since at this value of ωF , the laser is in resonance with one of
the frequencies of the 3:2 resonance. This is in agreement with the results of
Figure 6.4(d), where the corresponding region is seen to be almost completely
destroyed and filled with (chaotic) trajectories with high values of the SALI,
which are also seen in Figure 6.7(d) to lead to fast dissociation. The (larger)
phase space region corresponding to motion around 1:1 is however largely
unaffected, since there the ratio between laser and molecular motions is very
irrational, i.e. γ/2. This tendency reverses for the next point in the graph,
i.e. ωF = 0.0103, where laser and molecular motions are not in resonance any
more.

The global maximum for dissociation, which is also a global maximum
for chaotic trajectories, appears at ωF = 0.01857. This corresponds to a 3:2
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resonance between laser and HCN. Notice, also that this value is different
from that of 0.011, chosen in Ref. [Set12] only on the criteria that the laser
is out of resonance with the CH harmonic frequency. The results presented
in this thesis clearly indicate that this 1:1 resonance at low energy with the
laser, although important, is not necessarily crucial. The reason for the rele-
vance of the 3:2 resonance is not totally clear, and certainly deserves further
investigation. However, this finding is not unreasonable. Resonance 3:2 is
the first one in the layer of the Farey tree originated by the 1:1 (with a large
area of influence) and the 2:1 (where dissociation severely decreases) parent
resonances, then sharing the dynamical characteristics of both of them. Also,
one should be aware that the relevance of the 3:2 resonance may change, for
example, when considering other values of the laser amplitude.

Figure 6.8: Fraction of dissociative (black circles) and chaotic (blue circles)
trajectories as a function of the laser frequency, ωF . All peaks and valleys
are found to be correlated with resonances between ωF and ω∗ = ω

[1:1]
1,2 , as

indicated by the labels, except for the case of the peak encircled in red,
where the resonance condition corresponds to ωF = (2/3)ω

[3:2]
2 . (See text for

details.)

To conclude, it should be emphasized that Figure 6.8 is very important,
since it summarizes all the relevant dynamical information on the laser in-
teraction with the HCN vibrations. Indeed, it allows to predict which laser
frequency values are the most effective in promoting/avoiding molecular dis-
sociation in this system. Moreover, Figure 6.8 clearly illustrates the process
of tori persistence and destruction with respect to the variation of an external
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parameter, in the spirit of the KAM theorem. In this sense, the results are
analogous to those presented in this multifractal analysis of the frequency
map as a function of the excitation energy [Tar01], showing peaks and val-
leys associated to the density of regular tori in a similar, although laser free,
molecular system.
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Chapter 7

Complex Networks

Complex systems are ubiquitously present in natural and human-related phe-
nomena, and complex networks are considered the backbone of such systems
in a wide range of scenarios ranging from social and ecological to biological
and technological systems. For example, the brain can be modelled as a
network where each neuron is represented by a node and links represent the
interaction among neurons, while the power grid is designed to be a network
where the generators are the nodes and the transmission lines are abstracted
as links. Thus, the study of complex networks has become one of the ma-
jor topics of interdisciplinary research in the XXI century. Nevertheless, the
theory of networks goes back to graph theory, a branch of discrete mathe-
matics that focuses on the analysis of networks since 1736, when Leonhard
Euler famously found the solution of the problem of the seven bridges of
Königsberg.

The explosion in the development and application of network theory in
recent years is not due to the appearance of new systems to study, such as the
cell-phone calls network. It should be noted that most of the systems under
study are by no means new. For example, metabolic networks date back to
the origins of life, sociologists have been studying social networks for decades
and the Internet is now over four decades old. In contrast the reason for this
explosion of network science is the availability of large amounts of data. In
the past the ability to build accurate maps was limited by the absence of
high resolution data. Hence, the lately acquired ability to store and share
data prompted the evolution of network science. Nowadays Internet and the
emergence of cheap digital storage have enhanced the storage and share of
data, permitting its analysis in the shape of networks. Another key issue
that has promoted network science is that, despite most complex systems
largely differ in their nature goals and scope, after abstracting them as a
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Figure 7.1: Barcelona Metro network

network they share many properties. Given the diversity of the systems
studied by network science, one would expect that their properties will largely
differ. However, one of the most important discoveries of network science
was that this is not the case. On the contrary, the network emerging from
diverse systems are rather similar to each other, allowing us to use a common
formalism and mathematical tools to explore them. Hence, the universality of
networks is a fundamental principle that has guided the explosion of network
science in the past two decades.

7.1 Networks and graphs

A network is an abstraction of a system in which we represent its elements
as nodes or vertices and the interactions between them as links or edges.
Formally this is defined by the triple (V,E, f) where V is a finite set of
nodes or vertices, E ⊆ V × V = {e1, e2, ..., eL} is a set of edges (also named
links) and f is a mapping which associates some elements of E to a pair of
elements of V , such as that if vi ∈ V and vj ∈ V then f : ep → [vi, vj].

The number of nodes or vertices of the network is given by N which is
the size of the network. Nodes are usually referred to by an integer i ∈
{1, 2, ...N}, but the labelling is completely arbitrary. The number of links or
edges is denoted by L, with 0 ≤ L ≤ N(N − 1)/2. In a undirected graph,
each of the edges is defined by a couple of nodes vi and vi, and we say that
the edge ek = (vi, vj) connects nodes vi and vj or is incident in them. On



7.1. NETWORKS AND GRAPHS 81

the other hand, in a directed graph, the order of the two nodes in a edge has
to be taken into account, and then we distinguish between edges (vi, vj) and
(vj, vi). Two nodes connected by an edge are referred as adjacent nodes. For
network and vertex v ∈ V , the neighbour set Nv of v is the set of vertices
(other than v) adjacent to v.

Networks usually have at most one edge between two nodes. In case that
there are more than one edge between the same pair of vertices we refer to
them as a multiple edges. On the other hand, if a link connects a node
to itself, it is called a loop. A network that has neither loops nor multiple
edges is called simple. A bipartite network has two kinds of vertices, one
representing the original vertices and the other representing the groups to
which they belong [New10].

There is a type of real networks for which it is useful to represent edges
as having a strength, weight, or value to them, usually a real number. This
is for example the case of the Internet network, where edges can be as-
signed to weights representing the amount of data flowing along them or
their bandwidth. These are called weighted networks, which are formally
described by the quadruple (V,E,W, f), with V,E, f previously defined and
W = {w1, w2, . . . wL} being the set of weights associated to each edge in the
network. In matricial representation, the network is described by the weight
matrix W is an N x N matrix whose entry wij ∈ R is the weight associated
to the link (vi, vj).

Another important concept to be defined is that of reachability of two
different nodes in a network. A walk W from node vi to node vj is an
alternating sequence of nodes and edges (a sequence of adjacent nodes) that
begins with vi and ends with vj [Har94]. Formally, we have:

W : vi → vi+1 → · · · → vj−1 → vj (7.1)

A walk W between edges vi and vj is closed if vi = vj . A trail is a walk
in which no edge is repeated. A path is a walk in which no node is visited
more than once: vm 6= vn ∀ m 6= n. A walk W is a cycle if it is closed
and vm 6= vn ∀ m 6= n except vi = vj. The distance or length of a path is
defined as the number of links that the path contains. The shortest path (or
geodesic) between two nodes refers to the path with fewer links that connects
the two nodes. Then, a network is said to be connected if, for every pair of
distinct nodes i and j, there is a path from i to j, otherwise the network is
said to be unconnected or disconnected. Furthermore, a network is called
acyclic, if it has no cycles. An acyclic network is also called a forest. A tree
is a connected acyclic network [Har94].
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Figure 7.2: Robert Fischer’s chess game tree (Arbor Ludi) [Ser18]

The concepts above are illustrated here with two graphical examples. Fig-
ure 7.1 shows the network of Metro transportation in Barcelona, with the
nodes being the stations and the links being the lines between them. This
network is connected (any station can be reached from any other one), undi-
rected (trips can be done in both ways), and passengers choose the route
(path) with the shortest (geodesic) distance between origin and destination.
On the other hand, figure 7.2 depicts the so called Arbor Ludi (game tree)
of the World’s champion chess player Robert Fischer considering the games
he played during his professional career. The links represent the moves dur-
ing a given game that he would perform, while the edges corresponds to
intermediate positions, and the ramifications represents the evolutions and
variants of the game from the beginning and aperture to the end. Thicker
links correspond to moves that Fischer most frequently used. The two colors
orange and green on the graph correspond to either playing white or black
pieces (therefore there are two type of edges in the network). This plot repre-
sents indeed two superimposed networks (one per color) both of them being
a weighted directed tree (note that it is not a bipartite network since there
are no links between the two types of nodes).
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7.2 Degree of a node

The main property of each node is its degree k. The degree of a node
represents the number of links that the nodes has to other nodes in the
network. The average degree for undirected graphs is given by:

〈k〉 =
1

N

N∑
n=1

ki =
2L

N
(7.2)

For directed networks, we can extend the definition of degree by distin-
guishing between in-degree (kini ) and out-degree (kouti ). The first one mea-
sures the number of links that point to node i, while the second one measures
the number of links that point out from node i. The sum of a node in and
out degree is equal to its degree:

ki = kini + kouti (7.3)

If every vertex has the same degree, the graph is called regular. In a
k-regular network each vertex has degree k.

The degree distribution, P (k), represents the probability of randomly se-
lecting a node with degree k. Hence, in a network of size N, P (k) is given by
the following expression:

P (k) = Nk/N (7.4)

where Nk represents the number of nodes in the network with degree k.
The degree distribution plays a key role in network science, as it is used to
calculate many network properties, such as the average degree.

7.3 Matricial description of Networks

A representation of the graph can be given in terms of an adjacency matrix
A, which is a N x N binary matrix whose entry Aij is 1 if (i, j) ⊂ E and
0 if nodes i and j are not connected. Note that for undirected graphs the
adjacency matrix is symmetric, and that for networks without loops (as we
consider in this thesis), the diagonal entries of the adjacency matrix are zero.

The degree of a node can be easily obtained from the adjacency matrix.
In the simplest case of an undirected network the degree (ki) of node i is
either the sum over the rows or columns of the matrix:
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ki =
N∑
j=1

Aij =
N∑
j=1

Aji (7.5)

Thus for directed networks, ki = kini and kouti can be expressed as:

kini =
N∑
j=1

Aji k
out
i =

N∑
j=1

Aij (7.6)

An alternative procedure to describe a network is via its incidence matrix.
For the case of an undirected graph is a N x L matrix B, such that Bij = 1
if the vertex vi and edge vj are incident and 0 otherwise. For the case of a
directed graph, the incidence matrix B is also N x L such that Bij = 1 if the
edge ej is incoming to vertex vi, Bij = −1 if the edge ej is outcoming from
vertex vi, and 0 otherwise.

Other relevant matrices associated to a network are the Normal matrix,
defined as N = D−1A, where D is the diagonal matrix with elements Dii = ki
and the combinatorial Laplacian matrix (also known as Kirchhoff matrix)
defined as ∆ = D −A. The Laplacian can also be expressed in terms of the
incidence matrix as ∆ = BBT , and thus it is a semidefinite positive matrix.

A key concept in matrix theory is that of eigenvalues and eigenvectors,
which renders relevant information of matrices in general, and also particu-
larly of network structure and features. The spectrum of a network is defined
as the set of eigenvalues of its adjacency matrix A. When the network is undi-
rected, without loops or multiple edges, A is real and symmetric, and thus
the graph has N real eigenvalues µ1, µ2, . . . , µN , and the eigenvectors corre-
sponding to distinct eigenvalues are orthogonal. On the contrary, when the
network is directed, the eigenvalues can have imaginary part.

The Perron Frobenius theorem states that the adjacency matrix of net-
work has a real eigenvalue µN associated to a real nonnegative eigenvector,
and such that |µ| ≤ µN for each eigenvalue. If the graph is connected, then
µN has multiplicity 1 and |µ| < µN for all eigenvalues different from µN . The
value of µN decreases when vertices or edges are removed from the graph.
For a connected undirected graph, this means that the largest eigenvalue µN
is not degenerate.

The spectrum of the Laplacian matrix λi(∆) also captures many topo-
logical properties of the network. It must be noted that ∆ is always positive
semidefinite. All the eigenvalues of ∆ are real and non-negative, and ∆ has



7.4. CLUSTERING MEASURES 85

a full set of N real and orthogonal eigenvectors. Since all rows of ∆ sum
to zero, the Laplacian always admits the lowest eigenvalue λ1(∆) = 0, with
associated eigenvector composed of N ones. The algebraic multiplicity of this
eigenvalue is equal to the number of connected components in the network.
Furthermore, the first non-zero eigenvalue λ2(∆) (also referred as the Fiedler
eigenvalue or algebraic connectivity) gives a measure of the connectedness of
the network.

7.4 Clustering Measures

The clustering or transitivity of a network indicates the relation between
the neighbours of an edge among them. If the edge connection is transitive
among three vertices vi, vj, and vk, it implies that if vertex vi is connected
to vertex vj, and vj is connected to vk, then vi is also connected to vk.
Thus, transitivity measures the total number of closed triangles in a network.
Random networks, such as the Erdös - Rényi network, do not present a
clustering structure, while most of the complex networks present in nature
do. The clustering of a network can be defined in several ways. Following the
previous example of three vertices, If the transitivity relation holds among
them, there is a path which forms a loop of length three, and we say that the
path is closed. The clustering coefficient is then defined to be the fraction of
paths of length two in the network that are closed.

The clustering coefficient is obtained as follows : we count all paths of
length two, and we count how many of them are closed, and we divide the
second number by the first to get a clustering coefficient C that lies in the
range from zero to one :

C =
number of closed paths of length two

number of paths of length two
(7.7)

C = 0 implies no closed triads, while C = 1 implies perfect transitivity.
An alternative description of the clustering coefficient is given as follows:

C =
number of triangles x 6

number of paths of length two
(7.8)

In other words, the clustering coefficient measures the fraction between
the actual triangles in the network and the potential triangles that could be
closed

The clustering coefficient can also be defined locally for a single vertex i,
as follows:
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Ci =
number of pairs of neighbors of i that are connected

number of pairs of neighbors of i
(7.9)

In this definition, for those vertices with degree equal to 0 or 1 (in which
case the numerator and denominator of the above expression is zero) we set
Ci = 0. The coefficient for the overall network is then computed as the
average value of the individual clustering coefficients:

C =
1

N

N∑
j=1

Ci (7.10)

7.5 Centrality Measures

In the context of network science there are several measures that quantify
how central each node is in a given network. The goal of centrality measures
is to determine the importance or influence of a given node in the network.
The most basic measure of centrality is the degree already described previ-
ously. Other measures of centrality include closeness centrality, betweenness
centrality, eigenvector centrality and page rank centrality. They are described
in subsequent sections.

7.5.1 Betweenness Centrality

Betweenness is a centrality measure of influence of a node within a networks
(it can also be defined for links). This measure quantifies the number of
times a node acts as an intermediary along the shortest path between two
other nodes.

bi =
N∑
j=1

njk(i)

njk
(7.11)

with njk being is the number of shortest paths connecting j and k, while
njk(i) is the number of shortest paths connecting j and k and passing through
i.

7.5.2 Closeness centrality

This measure quantifies how close (or far) is a node from the rest of the
nodes in the network. Intuitively, it represents how long it will take a node
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to spread information to all other nodes. In connected networks we can
define a natural distance between all pairs of nodes. This distance is given
by the length of the shortest path connecting each pair of nodes. Thus, the
closeness of a node is defined as the inverse of the sum of its distances to all
other nodes. Therefore, the more central a node is the lower its total distance
to all other nodes.

7.5.3 Eigenvector centrality

Eigenvector centrality measures the influence of each node in a network.
This measure assigns scores to nodes in the network based on the concept
that connections to central nodes contribute more to the score of the node
in question than the same number of connections to peripheral nodes. In
many circumstances a vertexs importance in a network is increased by having
connections to other vertices that are themselves important. Taking this
rationale into account, eigenvector centrality of a vertex is defined to be
proportional to the sum of the centrality of its neighbours. The derivation of
its formal definition is as follows. In a first iteration, each vertex is assigned
the same centrality, for example xi = 1,∀i = 1 . . . N . We then compute a
second iteration for the ith vertex by means of the sum of its neighbours, as
follows:

x′i =
N∑
j=1

Aijxj (7.12)

This expression can be cast in matricial form as x′ = Ax with A being
the adjacency matrix and x the vector with elements xi. The process can be
repeated t times to make better estimates, resulting in the evolution of the
eigencentrality as:

x(t) = Atx(0) (7.13)

Since A is symmetric matrix, its normalized eigenvectors vi form an nor-
malized basis that span RN . Thus, x(0) can be expressed as follows for some
constants ci

x(0) =
N∑
j=1

xivi (7.14)

Based on linear system theory and the expressions above, we have that
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x(t) = At
N∑
j=1

civi =
N∑
j=1

ciλ
t
ivi = λt1

N∑
j=1

ci(
λi
λ1

)tvi (7.15)

with λi being the eigenvalues of the A matrix and λ1 the largest one.
Thus, the series converges to ciλ

t
1vi

In matrix form, it can be stated that the centrality vector satisfies Ax =
λ1x

Therefore we have that eigencentrality of node i is indeed proportional to
the average eigencentrality of its neighbours:

xi =
1

λ1

N∑
j=1

Aijxj (7.16)

In general, there will be many different eigenvalues for which an eigen-
vector solution exists. However, all the entries in the eigenvector need be
positive since negative centralities make no sense. Hence, this implies (by
the Perron Frobenius theorem) that only the eigenvector associated to the
greatest eigenvalue results in the desired centrality measure. Thus, the cen-
trality score of node i is given by the ith term of the related eigenvector

It should be noted that PageRank (used by Google) and Katz centrality
are variants of the eigenvector centrality.

7.6 Network models

7.6.1 Random Networks

One of the goals of network theory is to develop models that reproduce
the network structure of the complex systems that we encounter in nature.
Real networks do not present a regular crystal structure, such as the lattice
forming the net of a goal. In contrast, the networks we find in nature present
a much more random structure.

Random network can be defined as a set of nodes N where each pair of
them is connected with the same probability p. In other words, a random
network consists of N nodes with L randomly placed links. Thus, we can
easily build a random network in the following way. We first create a set of
N nodes. Next, we select all possible pair of nodes and generate a random
number between zero and one for each pair. If the number is smaller than
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a fixed probability p we link the pair of nodes, otherwise we do not connect
them.

Paul Erdös and Alfréd Rényi significantly contributed to the knowledge
on random networks properties, and for this reason these networks are usually
referred as Erdös - Rényi (ER). It should be emphasized that a given network
is one outcome of the possible realizations.

The average degree 〈k〉 of a random network is determined by the size of
the network N and the parameter p that controls the density of the network.
Hence, 〈k〉 results from the product of p and the maximum number of links
a node can have (N -1). It can be expressed in the following way:

〈k〉 =
2L

N
= p(N − 1) (7.17)

The degree distribution of a random network is given by the binomial
distribution

P (ki = k) = Ck
N−1p

k(1− p)N−1−k (7.18)

Therefore, by using the properties of the binomial distribution we can
calculate the average degree and its standard deviation. It is well known
from probability theory that for fixed 〈k〉 and large N, we can approximate
the degree distribution by the Poisson distribution given by the following
expression:

P (k) = e−〈k〉
〈k〉k

k!
(7.19)

The Poisson distribution is only an approximation to the degree distri-
bution of a random network. However, due to its analytical simplicity in
comparison to the binomial distribution, it is usually the preferred form.

7.6.2 Small-World networks

The small-world effect is an interesting phenomenon observed in social net-
works that was first reported within an experimental approach by Stanley
Milgram in the 1960s [Tra69, Mil67]. Milgram conducted an experiment in
which a series of individuals on Kansas and Nebraska had to send letters
to individuals who they did not know living in Boston, Massachusetts. The
letters passed from person to person and surprisingly were able to reach the
designed target in a few steps (around six on average). A similar phenomenon
is also found in the well-known parlor game called the Six Degrees of Kevin
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Figure 7.3: Rewiring process in the Small World model. Adapted from
[Est15]

Bacon, in which one attempts to connect pairs of actors A and B via chains of
costars, such that each intermediate pair collaborated in at least one movie,
in such a way that chain ultimately links actors A and B.

Similarly, there is a well-known reference within the mathematicians com-
munity (referred as Erdös number), which is related to the scientific papers
an author has published, and the links of its co-authors established via their
own publishing record. To be assigned an Erdös number, someone must be
a co-author of a research paper with another person who has a finite Erdös
number. The procedure goes as follows: Paul Erdös is assigned an Erdös
number of zero. Anybody else’s Erdös number is n + 1 where n is the lowest
Erdös number of any co-author. Thus, such number provides an indication
of the closeness with respect to Paul Erdös. It is interesting to notice that
even Nobel prizes of quite unrelated fields (such as medicine) have an average
Erdös number lower than six.

This concept was formalized by Watts and Strogatz [Wat98], which in-
troduced the so-called small-world property of networks, and showed its rel-
evance in biological and technological applications. The model is based on
a rewiring procedure of the edges implemented with a probability p. The
starting point is a N nodes ring, in which each node is symmetrically con-
nected to its 2m nearest neighbours for a total of K = mN edges. Then,
for every node, each link connected to a clockwise neighbour is rewired to a
randomly chosen node with a probability p, and preserved with a probability
1p. In the case with p =0 we have a regular lattice, while for p = 1 the
model produces a random graph with the constraint that each node has a
minimum connectivity kmin = m. For intermediate values of p the procedure
generates graphs with the small-world property and a non-trivial clustering
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Figure 7.4: Small World normalized clustering coefficient (yellow squares)
and average path length (red circles) versus the rewiring probability p.
Adapted from [Wat98]

coefficient.

Small-world networks combine a high level of clustering with a small
average path length (see figure 7.4, where this effect occurs in the middle
of the p probability range). It turns out that the existence of shortcuts
in a network allows for the coexistence these two apparently incompatible
features. Indeed, adding a few links between distant regions to a highly
clustered regular network may be sufficient to drastically reduce the average
geodesic distance without significantly altering the high clustering in the
network.

7.6.3 Scale-free networks

It has been observed in many examples in the network literature [New03]
that the degree distribution of many real networks do not follow the profile
associated to random networks. For example, when plotting the degree dis-
tribution of many networks associated to internet (web pages in a certain
field, distribution of clients, etc.) it is observed that most of the vertices
in the network have low degree but there is a significant tail to the dis-
tribution, corresponding to vertices with substantially higher degree. We
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call such a well-connected vertex a hub and this new type of networks as
scale-free networks. This term refers to any functional form that remains
unchanged to within a multiplicative factor under a rescaling of the indepen-
dent variable. For this reason they are also called power-law networks, since
these are the only functions that comply with such requirement. It is worth
mentioning that small world effect (in terms of low average path length) can
also be observed in these networks, although it is not obtained by rewiring
as in the Watts and Strogatz model.

The main difference between these scale-free networks and random graphs
appears in the tail of the degree distribution. While for random networks the
probability of finding a node with degree k rapidly decreases, the pattern is
significantly different in the scale-free case. For scale free networks the prob-
ability of finding high degree nodes, or hubs, is several orders of magnitude
higher than in random networks. For scale-free networks, we say that the
degree distribution is right-skewed, which means that their distribution has
a long right tail of values far above the mean.

There are two basic assumptions in the Erdös - Rényi model that do not
occur in real life. The first assumption is that networks are static. The
ER model fixes the number of nodes that does not vary during the forming
process of the network. This is not true in nature, where systems continually
grow with the addition of nodes. The second one is that the ER model
assumes that we randomly choose with whom we interact. However, this is
not true, as new nodes prefer to connect with those that are already highly
connected (hubs). This is known as the preferential attachment rule. In
summary the ER model fails to explain the growth of real networks and the
emergence of hubs. Yet, these properties emerge from preferential attachment
rules. The first network growth model based on preferential attachment was
proposed by Price. However, preferential attachment did not become widely
accepted as a mechanism for generating power laws in networks until the
1990s, when it was discovered by Barabási and Albert [BaAl99].

The model proposed by Barabási and Albert is defined as follows. At
each time step a new node is created with m links that will connect the new
node to the previously existing ones. The probability that the new node
becomes connected to a node i of degree ki is

P (ki) =
ki∑N
j=1 kj

(7.20)

The model is based on a probabilistic rule that determines that a node



7.7. PROCESSES ON NETWORKS 93

Figure 7.5: The network of protein-DNA interaction in B-cell development
[Rav13]

can connect to any other node in the network, being more probable that it
connects to a hub than to a low degree node.

Reference [Sant08] presents a framework for the extension of the Barabási-
Albert model to heterogeneous complex networks. In this case, the m links
attached to a new node va are randomly connected to the network nodes
following a distribution Π(vi) given by an extended attachment rule:

Π(vi) =
π(vi)∑N
j=1 Π(vj)

(7.21)

The attachment kernel or visibility π of a node vi in the rule is given by
the product of its degree ki and its affinity σ with the newly added node
va, which is itself a function of the states of nodes i and a (xi and xa,
respectively):

π(vi) = kiσ(xi, xa) (7.22)

7.7 Processes on Networks

The concepts introduced in previous sections list some of the most relevant
features that describe the topology of a complex network. Nevertheless,
equally important in the study of complex networks is the description and
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analysis of processes taking place on their structure. The types and practical
examples of such processes are numerous, ranging from social, economic,
technological to biological fields ([Rav13, Gros11, Noe1918, Bar08, Hav10,
Est15]). As an example of such processes we can mention those associated
with Gene Regulatory Network (GRN), as the one shown in figure 7.5). This
section reviews some important ideas regarding the processes that frequently
take place within the structure of a network.

7.7.1 Percolation and network resilience

A percolation process is one in which vertices or edges on a graph are ran-
domly designated either occupied or unoccupied and one asks about various
properties of the resulting patterns of vertices [New03]. An example is related
to the immunization of individuals against a certain disease, or the removal
of a fraction of the vertices in a network, as in the case of failure in Internet
routers (cf. [New10]). The dual phenomenon is bond percolation, in which
some of the bonds or links of the network are occupied (see figure 7.6).

This process has important implications regarding the resilience of a net-
work. For example, in case of removal of nodes with a high degree, the
connectivity of the network can be seriously affected. Regarding nodes re-
moval, a network is said to be robust if it can tolerate the loss of a large
fraction of its nodes and still being connected. Scale-free networks are said
to be highly robust because they keep a giant component even after removal
of many of its nodes [New03]. On the other hand, in case of intentional
attacks, a scale-free structure can cause more damage than a random attack

A similar problem is that of diseases spreading (or internet virus propaga-
tion, for that matter) which can be controlled in a smart way by proceeding
to vaccination only of nodes with highest degree. This is the so called herd
immunity effect. In this case power-law networks cause more problems be-
cause they require a vaccination of a larger number of elements in the network
to prevent the disease dissemination [Hav10].

7.7.2 Consensus dynamics

Consensus is a dynamical process between the elements within a group or
network that try to reach an agreement on a certain quantity of interest
[Olf07]. The most standard consensus dynamics mechanism for a network of
N nodes and adjacency matrix A is given by:
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Figure 7.6: Site (left) and bond (right) percolation. Adapted from [New03]

ẋk(t) =
∑
l⊂Nk

Akl(xl(t)− xk(t)) (7.23)

which can be cast in matrix form as:

ẋ = −∆x(t) (7.24)

where ∆ is the Laplacian matrix of the network, defined in §7.3. The
equivalence of this equation to the classical Fourier law for heat diffusion
equation leads to the use of the Laplace operator to denote also the Laplacian
matrix.

The discrete time equivalent of these consensus dynamics is given as fol-
lows (also presented in section §8.1.1):

xk(n+ 1) = xk(n) + ε
∑
l⊂Nk

Akl(xl(n)− xk(n)), (7.25)

Diffusive phenomena in networks for instance as described by the equa-
tions above) have been extensively studied (e.g. [Del15, Bar08]).

A consensus is reached whenever the following condition holds after a
given time t [Olf07] :

x1 = x2 = · · · = xN (7.26)

In other words, the network nodes states converge to the subspace x
= span(1) with 1 = (1, · · · , 1)T . When the equilibrium condition is met,
the state reached by every node is equal to the average of the initial state
value of all nodes. As explained in section §7.3, Perron-Frobenius theorem
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states that 1 is an eigenvector of the Laplacian matrix associated with the
zero eigenvalue λ1. For a connected network, the rest of the eigenvalues
of the Laplacian matrix (λ2, · · · , λN) are positive. The time convergence
of consensus dynamics is dictated by the second smallest eigenvalue of the
Laplacian matrix λ2 (algebraic connectivity of the network, introduced in
§7.3) because it defines the rate of convergence of the slowest mode [Olf07].

7.7.3 Synchronization on networks

Historically, research on synchronization phenomena have been conducted
since the earlier days of physics. Already in the XVII century Christian
Huygens discovered that two pendulum clocks hanging at the same beam
were able to perfectly synchronize their phase oscillations [Stro03]. Synchro-
nization is encountered in many natural phenomena (fireflies, semiconductor
lasers, electronic circuits, etc. [Boc06, Stro03]). The approach started by
Winfree [Win67] was based on a population of coupled nearly identical limit-
cycle oscillators. This simple model capture with reasonable fidelity many
observed real phenomena. As the coupling is increased, a certain threshold
in the interaction strength is reached, above which the number of oscillators
locking into synchrony continuously increases with the coupling intensity, ul-
timately reaching total synchronization. Kuramoto [Kur84] worked on the
problem by means of a simple mathematical formulation in order to capture
the rationale behind the onset of synchronization. His model is based on
an all-to-all oscillators phase coupling, by means of the following governing
equation for each of the N elements:

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)) (7.27)

with ωi being the natural frequency of oscillator i and K the coupling strength
parameter. The frequencies ωi are distributed according to some function
g(ω), that is usually assumed to be unimodal and symmetric about its mean
frequency Ω [Are08]. Kuramoto introduced a change of reference frame as
ωi → ωi + Ω so that the ωis denote deviations from the mean frequency. The
analytical treatment of the problem then follows the mean field approach.
The collective dynamics of the whole population is measured by the macro-
scopic complex order parameter:

r(t)eiφ(t) =
1

N

N∑
j=1

eiθj(t) (7.28)
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with 0 < r(t) < 1 measuring the coherence of the population and φ(t) being
the average phase, the higher its value the more overall synchronization is
present among the oscillators. The Kuramoto equation can then be written
as follows for each element i:

θ̇i(t) = ωi +Krsin(φ− θi(t)) (7.29)

Thus, each oscillator interacts with all the others only through the mean
field quantities r and φ. It can be shown that [Are08] there is a critical value
of the coupling parameter K at the onset of synchronization above which
r > 0, whose value is:

Kc =
2

πg(0)
(7.30)

The all-to-all connection considered above can be generalized to a set of
oscillators embedded in a complex networks with a given wiring topology.
Then, equation 7.27 is transformed into the following form:

θ̇i(t) = ωi +
K

N

N∑
j=1

σijAijsin(θj(t)− θi(t)) (7.31)

where σij denotes the strength coupling between nodes vi and vj, and Aij
is the corresponding element of the adjacency matrix. In this case, critical
coupling for synchronization depends also on the maximum eigenvalue of the
adjacency matrix A (ibid.). Furthermore, analysis of the stability of the
synchronization regime can be undertaken by means of Lyapunov functions
and spectral graph theory, even for uncertain natural frequencies [Jad04]

A further extension of the Kuramoto problem is proposed in [Jad04,
Hong11b]. There, all the oscillators are assumed to have the same natural
frequency, but some of them (referred as contrarians) are negatively coupled
to the mean field, while the rest of the elements (named conformists) are pos-
itively coupled. The observed dynamics in such case include travelling waves,
complete incoherence, and full splitting of the population in two diametri-
cally opposed factions. This alternative framework is used in [Louz12] for the
study of techniques oriented to the suppression of undesired synchronization,
based on the use of contrarians and either local or global information of the
network status.

Synchronization phenomena are certainly not limited to the Kuramoto
model briefly described here [Stro03]. Extensive research has been conducted
in the field [Boc08], not only for regular dynamics but also for chaotic ones.
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Stability of the synchronized state can in general be addressed by the so
called Master Stability Function (MSF) [Are08, Boc08].

7.7.4 Spreading mechanisms

One of the processes most commonly found in real networks is that of spread-
ing, which is also associated to percolation described above. This include
spreading of epidemic diseases, via the susceptible-infected-susceptible (SIS)
and the susceptible-infected-removed (SIR) models [Boc06]. In the first case,
each element of the population is either susceptible (S) or infected (I). It is
considered that an individual at the I group can infect its neighbours in the
network with a rate λ, and be recovered to the S state at a rate µ. The
SIR model corresponds to those diseases that result in an infected individual
being removed (R) from the infection process, either because they become
immune to the illness or they are removed for other reasons (they are de-
ceased or translated outside of the network). In that case the recovery rate
leads an individual towards the R group of the population. The dynamical
equations for the SIR model are given by:

Ṡ(t) = −λkI(t)S(t)

İ(t) = −µI(t) + λkI(t)S(t)

Ṙ(t) = µI(t) (7.32)

where S(t), I(t), and R(t) are respectively the fraction of susceptible,
infected and recovered individuals at time t, and k is the number of contacts
per unit time in the population.

In both models, the dynamics on complex networks of the infection mech-
anism depend on the network topology [Boc06]. For example, a reasonable
assumption is that the infection rate λ depends on the degree of the node
[Hav10]. Additionally, it can be found a certain threshold to the value of λ,
below which the disease impact is null, and above which it reaches a certain
finite value. A similar problem for the disease dynamics is rumour spreading
[Boc06]. In this case the classes of individuals in the dynamics are ignorant
(I) spreader (S) and stifler (R). Spreading dynamics are here again affected
by equivalent transmission rates as for the disease models explained above.

7.7.5 Games on networks

Another case of dynamical processes undergoing over complex networks is
that of games on networks [Jack14, Gal10, Grew10, Sli01]. A brief review
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Figure 7.7: Equilibrium in the best-shot public game [Jack14]

of examples has been provided in chapter §1. The applications extend to
a wide spectrum of topics such as transport phenomena, collaboration and
market competition, imitation and altruism, social learning, strategic net-
work formation, research collaboration among firms, etc [Goy07]. The classi-
fication on games on networks depends on whether they imply collaborative
activities between nodes or not, if nodes have full or incomplete information
(about other player’s actions, payoff functions, network structure), whether
the games are repeated or not, etc.

One of the most general approaches in the study of these processes is
based on the analysis of the interaction among individuals who are connected
via a network and whose behaviour is influenced by their neighbours. Other
benchmarks include network formation [Sli01], agent-based models [Tesf06],
etc. Here we will only review the games between nodes of the network,
and in particular those related with the so called strategic complements and
strategic substitutes, where the interaction in payoffs between players satisfies
some natural and useful monotonicity properties [Jack14].

In the case of strategic complementarities, a player’s incentives to take
a certain action increase with the number of neighbours that take the same
action, whilst strategic substitutes present the opposite incentives. A canon-
ical example of the first case is the majority game, in which a player chooses
a certain action (voting for a candidate, selecting a certain technology, etc)
when the majority of its neighbours follows the same action. For the sec-
ond case, a typical class include those described as ”best-shot” public good
games. For example, in this category we can consider the decision on buying
a certain product or acquiring a piece of information that is easily shared
or lent (strategy denoted as 1) or rather not do it (denoted as 0). Once a
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neighbour has achieved the public good, it is not worth for the individual to
expend the effort or the cost to procure it, and rather the logical strategy
is to borrow it or have it directly from the other element. However, there is
a penalty for each element if nobody takes the action, so that a player will
rather follow this strategy if none of its neighbours has done it. It should be
noted that in this type of games the strategies are always followed by selfish
interests, regardless of the benefits or costs caused to other individuals in the
network.

A Nash equilibrium is then achieved once the strategy of each element in
the network is coherent with the overall game payoff rules and the selection
of its neighbours. The case depicted in figure 7.7 shows an example of an
equilibrium for a given network. It should be remarked that best-shot public
goods games on a network always have pure strategy equilibria, which cor-
respond to situations where the players who take action 1 form a maximal
independent set. It can be shown that finding equilibria for the strategic
complements type of game is relatively easy, while the same is not true for
strategic substitutes, which in general is a computationally expensive task
[Jack14].



Chapter 8

Game setup description

In this chapter we define a setup for games on networks where two teams
compete over the state of a general population to which each of them has
access. As explained in chapter §1, The layout of the problem under con-
sideration is defined by a general population (GP ) of elements which are
connected between them by means of an arbitrary complex network whose
adjacency matrix is denoted by A. The state of each element in the GP de-
pends on the consensus dynamics present between them, and some examples
of these are given in section §8.1. The game also includes two teams whose
connection to GP is given by the matrices SP and SM respectively, while
their activity to impact the state of nodes in GP is denoted by the vectors
aP and aM, formed by the actuations of each of its agents. In order to ensure
fairness in the game, the energy available to each team is fixed and equal,
given by the square of the norm of the a vectors. Each team has to select
the level of actuation of every agent so that the total payoff is maximized.
The analysis considers that the topology of the GP corresponds to a con-
nected graph. The GP is subject to consensus dynamics among its members
(described by a matrix C) which ultimately lead to a steady state. Said C
matrix depends on the influence mechanism between the GP members and
on the GP network topology. A similar constraint on the norm of the aP

and aM vectors is also applied to the SP and SM matrices, imposing that
their Frobenius norms are equal.

As in the case described in chapter §5, in the framework described in this
part of the thesis we also have a plant to be controlled, which here consists
on the GP and the consensus dynamics ruling the state of its elements.
Also, as commented in chapter §1 the strategies chosen by each of the two
teams competing in the game correspond to one controller. In this case it is
implicit that the teams have information of the state of the nodes in the GP
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Figure 8.1: The social network of friendship within a 34-person karate club
[Za77]

and thus a sensor is also present in the overall control layout. The members
of each team are considered as the actuators in the system, which in this case
corresponds to a closed loop architecture as defined in chapter §3. As it is
always the case on any control problem, the actuators have a limited energy
available, and this constraint is certainly considered, both teams having the
same limitation as commented in the previous paragraph.

8.1 Consensus on Networks

This section describes three study cases of consensus dynamics, deriving their
steady state and defining the concept of consensus function, which are ana-
lytically obtained for each of them.

8.1.1 Consensus based on damped influence

In reference [Zha14], a dynamical model for competitive dynamics on complex
networks is presented. The competition between the two agents in the model
is characterized by means of the relative impact of the competitors in the
network. One of the competitors (xN−1) consistently features a state value
of +1, whilst the other competitor (xN) holds a fixed −1 value, with N
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being the number of nodes. The rest of the agents in the network start with
a random value and each updates its state according to the equation:

xk(n+ 1) = xk(n) + ε
∑
l⊂Nk

Akl(xl(n)− xk(n)) (8.1)

with xk(n) being the state of agent k at time n while the parameter ε denotes
the level of neighbors’ influence, and Nk is the set of neighboring agents of
agent k directly linked to this agent. Finally, Akl denotes the elements of the
adjacency matrix of the whole network. It is shown in [Zha14] that the state
of each agent will reach a steady state value, provided that each normal agent
has a path connecting to at least one competitor and that 0 < ε < 1/Dmax,
with Dmax being the largest out-degree of agents in the network. The steady
state value of the set of agents is given in matrix form as:

x(∞) =
(
D − A

)−1
[ci,N−1 − ci,N ] (8.2)

where A is a submatrix of the matrix A formed by the Akl elements of
equation 8.1, rearranged so that the two competitors correspond to the last
two columns:

A =

 A ci,N−1 ci,N
rN−1,i 0 aN−1,N
rN,i aN,N−1 0

 (8.3)

Thus, column vectors ci,N−1 and ci,N contain the first N-2 elements of the
last two columns of A, whilst row vectors rN−1,i and rN,i contain the first N-2
elements in the last two rows of the A matrix. Similarly, D is the diagonal
matrix formed by the out-degrees of the non-competing agents. A study
in competition between two nodes is then conduct with application to the
classical karate club conflict problem ([Za77], see 8.1).

This thesis considers a different approach than the one considered in
previous studies [Zha14], [Zha15] and [Far12]. As commented in the intro-
duction, the problem under study has two teams P (Plus) and M (Minus),
pulling for values +1 (−1) and with NP (NM) elements, respectively. Each
team is connected to the same general population (GP ) network by means of
the adjacency matrix SP and SM , respectively. The elements of the general
population (N in total) are linked to each other by a network with an adja-
cency matrix denoted by A. Thus, we have that A is a N × N matrix, SP
is N ×NP and SM is N ×NM . Figure 8.2 depicts an example, with positive
team represented by blue dots (left) and negative team by red dots (right),
while the black nodes represent the general population. Their size has been
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Figure 8.2: Competition diagram between two teams (blue and red) and
connection to the general population (black).

set proportional to their eigencentrality. In this diagram, SP and SM are
identical, associated with a configuration described in chapter §9.

The overall network is now given by this A matrix:

A =

 A SP SM
STP 0 0
STM 0 0

 (8.4)

The goal of P team is to maximize the sum of states of the GP , whilst M
team’s objective is to minimize this value (maximize its negativity). Similarly
to reference [Zha14], the stationary value for the GP state vector x is given
by:

x(∞) =
(
D − A

)−1
[SPaP − SMaM] (8.5)
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where vector aP (aM) denotes the actions (values) taken by each of the
elements of P (M) team, and x is the vector formed by all the states of the
GP .

The justification of the existence of a steady state value of the state
vector is equivalent to the demonstration shown in [Zha14], being the above
equations a generalization of those presented in the mentioned reference.

In order to have a fair competition, the values of vectors aP and aM

must be equally limited. This can be conceptually related to both teams
having the same available energy E, according to the concept explained in
chapter §1. This condition is given by the 2-norm of each vector being equal
to β =

√
E. The limitation can be taken for integer values (as considered

in chapter §9 in the case of genetic algorithms) or by means of continuous
values, which is the case of the analysis from section 10.3 onwards.

It should be pointed out that in general, the particular function describing
the specific dynamics of influence/consensus is not relevant for the analysis
described in the following sections. Such consensus function will be noted as

C, being for instance C =
(
D − A

)−1
in the present consensus case (eq. 8.5).

This consensus function will also be derived for other cases in the following
sections.

8.1.2 Consensus based on neighbours’ average

Alternatively, the state of each element of the GP could be defined by means
of a weighted average of its neighbours and the effect of the P and M teams,
with ωkl being weights for each link given by the A matrix:

xk(n+ 1) =
1

di

∑
l⊂Nk

wklAklxl(n) (8.6)

+
∑
l⊂Nk

SP,klaP,l

−
∑
l⊂Nk

SM,klaM,l.

The equation 8.6 can be transformed in matrix terms as follows:

x(n+ 1) = W
(
D
)−1

Ax(n) + [SPaP − SMaM] (8.7)

If the matrix W
(
D
)−1

A has all its eigenvalues within the unit disk, the
above equation converges to the steady state vector:
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x(∞) =
(
I −W

(
D
)−1

A
)−1

[SPaP − SMaM] (8.8)

In this case, the consensus function is defined as:

C =
(
I −W

(
D
)−1

A
)−1

(8.9)

8.1.3 Transport and trade consensus

Another case of consensus dynamics is presented herein. Let us consider a
transport network in which a certain good (fruit, electricity, internet data,
etc) is traded among the nodes within the network, whilst two teams compete
as suppliers in the network, aiming to maximize their respective revenue. In
particular, we can consider the following generic equation:

xk(n+ 1) =

(
1−

∑
l⊂Nk

Akl

)
xk(n) (8.10)

+
∑
l⊂Nk

Alkxl(n)− Fkkxk(n)

+
∑
l⊂Nk

SX,klak

Thus, at each new step n + 1 a fraction of the state xk of previous step
is transported to each neighbour node l according to Akl (as given by the
first term of eq. 8.10). The second term represents the transportation into
node k brought from neighbour nodes, while the third term indicates the
amount of the good that is consumed at node k itself at step n, with Fkk
meaning the fraction of the good being consumed at that node. Finally, the
last term denotes the sum of contributions of the considered good coming
from supplier X through the matrix SX . A similar equation is applicable for
the second team with xk being substituted by yk, which corresponds to the
amount of the traded good at each node k as introduced in the market by
the second team. Note that in this case there are no Plus nor Minus teams,
and they are named X and Y instead. The reason is that in this case the
state variable corresponds to the amounts of the given good in the network
(which must necessarily be positive), and the total amount is given by the
sum of the vectors X + Y . The corresponding matrix equation for X is then
given by:

x(n+ 1) =
(
I − diag(1 A)

)
x(n) + A

T
x(n)− Fx(n) + SXax (8.11)
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where F is a diagonal matrix containing the Fkk elements on the kth row
and column. The described dynamics reach a steady state provided that the

eigenvalues of the matrix I − diag(1A) + A
T − F have a magnitude smaller

than 1. The resulting steady state is then given by:

x(∞) =
(
diag

(
1 A
)
− AT + F

)−1
SXax (8.12)

Equivalent equations are applicable for Y (or any other additional com-
peting team). In this case the consensus function is the following one:

C =
(
diag

(
1 A
)
− AT + F

)−1
(8.13)

It is worth mentioning that the game corresponding to this consensus
function is defined in a different way than the previous ones. Regarding the
payoff, it could be given by the sum of the state of the targeted elements of
the GP (as with the other cases). However, in this case the payoff could also
be associated for example to the income obtained by each team depending
on the price of the goods as purchased at each node. This price, on the
other hand, depends on the supply available at the node as introduced by
each team. The payoff can be computed as the product of the amount finally
consumed at each node by the local price. Alternative payoffs could be
considered too, but they are not further explored herein.

As a summary, table 8.1 presents the expression of the consensus function
C for the three considered cases.

No. Mechanism type Consensus function

#1 Damped consensus C =
(
D − A

)−1
#2 Average consensus C =

(
I −W

(
D
)−1

A
)−1

#3 Transport & Trade C =
(
diag(1 A)− AT + F

)−1
Table 8.1: Expressions of the considered consensus functions

Note that the reached steady state described above must be considered
in the sense of thermodynamical reversible processes. As it will be seen in
the following sections, such steady state can evolve in the long term based
on variations of external conditions, affected by slower dynamics than those
described in this section.

In summary, the game setup is defined by the adjacency matrices A, SP
and SM , actions aP and aM and the consensus function C. The following
sections explore optimization of actions and adjacency matrices design.
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Chapter 9

Numerical game optimization

In the previous section we have described a game between two teams acting
on the general population GP , ultimately leading to a steady state of the el-
ements of this network, which determines the payoff for each team. However,
the first point to be noted is that in reality such game can be considered as
a separate optimization problem for each of the two teams: team P has to
choose aP to maximize the value of the first term of eq. 8.5, regardless of
the solution chosen by M team on the aM vector. The reverse is valid for
the M team. This is not the case on the last section of chapter §10, where
the action of each team is to be selected as a function of the choice of the
opponent, because the governing equations in that case are coupled, entailing
dependency of the payoff for each team on both actions.

In the referred optimization process, several approaches can be taken.
The most straightforward one is to evaluate the value of the sum resulting
for the first term (for P team) for each of the combinations of aP elements
(similarly for M team) and select the option rendering maximum value. As-
sume that the number of elements in aP to be set to 1 is given by E ≤ NP ,

the rest being left to zero. Thus, there are Nc =

(
NP

E

)
possible combina-

tions. The associated payoff for each case can take quite a long time to be
computed for a large network (depending also on E).

Besides this preliminary analysis, a more refined numerical approach can
be followed based on Genetic Algorithms. The following sections provides
the basics of the analysis and the obtained results, which are compared in
chapter §10 with the analytical approach presented there.
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9.1 Genetic Algorithms

A Genetic Algorithm (GA) is a numerical method for solving problems in-
spired by nature via natural selection through genes evolution, mutation
mechanisms, and the survival of the fittest individuals. They are meant to
look for the optimal solution and therefore are related with optimal search
and control. This methodology can be applied to an extremely wide range of
problems, and the fields of applications are numerous: VLSI chips layouts,
image processing, robotics, water networks, spacecraft trajectories, etc.

Although there were some previous tries based on the same idea, the
method was basically invented by John Holland in the 1960s and was sub-
sequently developed by Holland and his students and colleagues at the Uni-
versity of Michigan. GAs are proven to be capable of solving many large
complex problems where other methods experience difficulties. One of the
keys of their popularity is the ability the prove to find global optimum within
search spaces where many local optima are present. This feature establishes a
relevant advantage with respect to gradient based methods (such as steepest
descent, etc).

The typical procedure for a genetic algorithm that considers the following
concepts:

Population definition. In order to properly look for the solution of the problem,
the population of potential solutions has to be adequately defined so
that optimal search is correctly conducted and the obtained solution
has a proper correspondence with the nature of the problem.

Chromosome. This is a string of genes that fully describes a particular solu-
tion. Each gene in the chromosome controls a particular feature of the
individual. An encoding method is used for this purpose, which typical
follow a binary code.

Fitness function. Each solution consists of an individual with a number of genes
that determines its fitness function, this being a function that quantifies
the optimality of an individual in the population. Each solution has
to be ranked against the rest of individuals. The fitness function must
be defined according to the performance variable that is the subject of
optimization in the problem.

Selection. This is the process that determines which solutions are to be pre-
served and allowed to reproduce and which ones deserve to die out.
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On each iteration the worse solutions are eliminated while the overall
population of solutions is kept constant. Several mechanisms can be
considered for this purpose (e.g. [Mitc96]). In this thesis the procedure
is based on a roulette wheel approach, in which parents whose chro-
mosomes have a better fitness have higher chances to be selected for
producing offspring.

Crossover. This is a mechanism by which the genes of the parents are crossed
to obtain the chromosomes of the children individuals. There are many
available methods for this purpose. One of the most popular ones (also
used in this work) divides the two parent chromosome strings at some
random point, and swaps each of the two resultant strings among the
two parents.

Mutation. This mechanism occurs randomly and introduces new features in
the chromosome of some individuals in the population by changing the
value of one gene. This introduces an additional way to proceed towards
the optimal solution of the problem (even if worse solutions can also
be result from mutation), in order to further enhance the best solution
search. It also allows to escape from local optimal points towards the
global optimum.

Some of the advantages of GAs are: they do not require information on the
derivative of the function being optimized, they are faster and more efficient
than some traditional methods, have good parallel capabilities, and they are
very useful when the search space is large involving many parameters.

The following figure depicts the typical process for a GA, which is also
used in the next section.

Figure 9.1: Genetic Algorithm general process
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9.2 Optimal action based on GA

A numerical search scheme can be followed by means of genetic algorithms
(GA), being the implemented procedure described herein. Each chromosome
is defined as a vector of NP elements, and the GA searches the best chromo-
some with optimal fitness against the opponent team action.

1. A population of NChr chromosomes is generated, of length NP and
number of 1’s equal to E. Then a search cycle of NGener generations is
repeated, with the following steps.

2. An array including the NChr chromosomes is stored, and the fitness
of each chromosome aP is computed as the sum of the state vector
resulting from eq. 8.5.

3. At each new generation, two parents from the previous generation are
chosen out of the chromosome pool, with a probability proportional to
their fitness. In case all of them have the same fitness, any two of them
are chosen and have two genes swapped. Then a point for dissection in
the parent chromosomes is randomly chosen and the children of the new
generation are obtained by joining the pieces of the two parents. The
difference in 1’s of the child with respect to E is randomly compensated
among its genes. This is repeated to obtain 3×NChr chromosomes.

4. Out of the newly obtained chromosomes, the NChr with best fitness are
selected for the next generation, and the rest are discarded. The best
one of each generation is used for the computation of the state vector
used in the following plots.

Figure 9.2 depicts an example of the GA result for the network shown
in Figure 8.2 with N = 200, NP = NM = 20, E = 5, and SP = SM .
The matrix A defines a random network with a 2 % probability of nodes
being connected. The number of actions combinations is Nc = 15504, and
the optimum resulting from an exhaustive search is depicted by the black
horizontal line. Additionally, we proceed to search the optimum by means of
GA starting with an initial random vector aP. The GA finds the same value
as obtained before via an exhaustive search, but the efficiency of this method
is proven because of the much shorter time used to obtain the optimal action
(the computation time ratio between both methods is approximately 76).

The best value is obtained within a few generations, as represented by
the blue line (first run). In the subsequent run of the GA search exercise,
the same process is followed again, with aM being set equal to the aP vector
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Figure 9.2: Search evolution by means of GA of optimal actuation solution.

obtained in the first run. This way we can establish an iterative process
looking for the best response to the solution of the previous run, equivalent
to a Nash equilibrium search. Since SP = SM , the solution results in a tie
because the best response to aP is an aM vector with the same values on its
elements, rendering a zero overall value (zero sum game).
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Chapter 10

Algebraic game optimization

10.1 Singular Value Decomposition

In this chapter we address again the problem of optimal action on the consen-
sus dynamics of the General Population described in chapter §8. However, as
opposed to the approached followed in §9, in this chapter we tackle this issue
by means of an algebraic approach based on Singular Value Decomposition.

Singular Value Decomposition (SVD) is one of the most widely and useful
techniques to reach relevant information from matrices. It allows to under-
stand many fundamental results in matrix theory.

In order to properly introduce the SVD concept, it is convenient to recall
herein some important facts about symmetric matrices. Let us consider a
square matrix S. We refer to this matrix as Hermitian or self-adjoint if
S∗ = S holds, where the * symbol denotes conjugate transpose. On the
other hand matrix S is said to be symmetric if ST = S, with T referring
to the matrix transposition operation. For real matrices, both concepts are
equivalent.

Spectral Theorem: Let us assume that S ∈ Cn×n is Hermitian. Then
there exist n (not necessarily distinct) eigenvalues λ1, . . . , λn and correspond-
ing unitary eigenvectors v1, . . . ,vn such that

Svj = λjvj ∀j = 1, . . . , n (10.1)

The eigenvectors form an orthonormal basis for ∈ Cn and because S is
Hermitian, they can be proven to be real. As a consequence of the spectral
theorem, the matrix S can be expressed as follows:
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S =
n∑
j=1

λjvjvj
∗ (10.2)

It can be seen that this equation expresses S as the sum of the special
rank-1 matrices. The singular value decomposition provides a similar way to
express a rectangular matrix.

In contrast to the eigenvalue decomposition that is always applied to
square matrices, the Singular Value Decomposition can be applied to a gen-
eral rectangular matrix M ∈ Cm×n with m ≥ n and rank(M) = n. We then
consider the n×n matrix M∗M (which is symmetric and positive) and com-
pute its eigenvalues λj and eigenvectors vj ∈ Cn, ∀j = 1, . . . , n these being
orthogonal to one another and with norm = 1. The eigenvalues are named
so that they are decreasing in size: λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

We can then define the singular values of M as σj =
√
λj ≥ 0. Because

of the ordering of λj we can also state that σ1 ≥ σ2 ≥ · · · ≥ σn > 0

We also define uj = Mvj/σj, ∀j = 1, . . . , n. Notice that u1, . . .un ∈ Cn,
have norm equal to 1 and are orthogonal to each other.

Since we have Mvj = σjuj, we can arrange these into a matrix form as:

MV = ÛΣ̂ (10.3)

where M ∈ Cm×n, V ∈ Cn×n, Û ∈ Cm×n and Σ̂ ∈ Cn×n and the columns
of the U and V matrices are formed by the uj and vj vectors respectively.

Furthermore, Σ̂ is a diagonal matrix with its entries formed by the singular
values σj in decreasing order.

Since the vj vectors are orthonormal and V is square, V is a unitary
matrix and equation 10.3 results in:

M = ÛΣ̂V ∗ (10.4)

This expression is known as the reduced singular value decomposition of
M.

On the other hand, since Û is a m×n matrix, even if its column vectors are
orthogonal, there is a non-trivial null space and the matrix is not invertible.
However, this matrix can be expanded with m-n additional column vectors
so that they form an orthonormal basis for Cn. The new matrix is denoted
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by U which is then unitary. Furthermore, we define the matrix Σ ∈ Cm×n

as follows:

Σ =

[
Σ̂
0

]
The singular value decomposition (SVD) is then stated as follows: for

any given m× n matrix M , it is well known (see [Horn12]) that this matrix
can be expressed as:

M = UΣV ∗ (10.5)

with U being a m×m unitary matrix, Σ a m× n matrix with non-negative
real values on the upper main diagonal, and V a n×n unitary matrix, and the
singular values of M are defined as the elements of the upper diagonal of Σ,
denoted by σi. The columns of U (respectively V ) are the left (respectively
right) singular vectors of M .

Other important properties for singular values and singular vectors are:

• The left singular vectors of M are a set of orthonormal eigenvectors of
MM∗.

• The right singular vectors of M are a set of orthonormal eigenvectors
of M∗M .

• The non-zero singular values of M are the square roots of the non-zero
eigenvalues of both M∗M and MM∗.

The SVD can also be expressed in dyadic form as follows:

M =
n∑
j=1

σjujvj
∗ (10.6)

In this ordered sum, the leading terms dominate the rest of them. It can
be seen the similarity with equation 10.2 which is equivalent for eigenvalues
and eigenvectors.

An important concept in matrix theory is the question of how to measure
the size of a matrix in terms of its entries. For this purpose, the norm of
a matrix is used. One type of matrix norms are those induced by vector
norms. For a p-norm of a vector (with 1 ≤ p ≤ ∞) we define accordingly
the induced p-norm of a matrix M as:
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‖M‖p = sup
x6=0

‖Mx‖p
‖x‖p

(10.7)

Alternatively, the norm of a matrix can be defined in terms of its entries.
The most relevant one is called Frobenius norm, which is defined as follows:

‖M‖F =

√√√√ n∑
i=1

n∑
j=1

|aij|2 =
√
tr(M∗M) =

√√√√min(m,n)∑
j=1

σ2
j (10.8)

where the trace function provides the sum of the elements of the diagonal.
The last equation expresses the Frobenius norm in terms of the singular
values of the matrix M.

A geometric interpretation of this decomposition is that the M matrix
corresponds to a linear map from the unit sphere in Rn onto an ellipsoid in
Rm. The axes in the canonical reference frame in Rn are rotated according to
V ∗, followed by a scaling of the resulting axes by means of Σ and finally with
a rotation given by the matrix U . Thus, each left singular vector is rotated
and scaled, with its new length given by its associated singular value. Hence,
the larger the singular value, the higher the amplification in the length of the
original axis in Rn by its projection onto Rm.

10.2 Optimal action based on SVD

The numerical optimization search of the action of P team (search of optimal
aP vector) commented in section 9.2 can also be conducted in an analytical
manner by means of the SVD decomposition. The idea is that if we consider
the N ×NP matrix given by:

M = CSP (10.9)

The action aP multiplying this matrix (which leads to the steady state
vector given by eq. 8.4) can be chosen to be the one corresponding to a
right singular vector of M (in particular to Vm, associated with the highest
singular vector σm).

As previously discussed, the norm of this vector (and that of aM) has to
be equal to β, in order to ensure equal conditions in the competition game
between both teams:
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Figure 10.1: Singular Value Decomposition. Graphical interpretation
(source: https://en.wikipedia.org/wiki/Singular value decomposition)

aP
(op) =

Vm
‖Vm‖2

β

σm = max σi i = 1, . . . , N
(10.10)

Thus, the optimization process implies the product:

MaP
(op) = UΣV TaP

(op) = Umσmβ (10.11)

Note that the solution obtained by this procedure entails a non-integer
solution of the values selected for each agent in aP, as opposed to the GA
search which considered only 0 or 1 as possible values. In order to properly
compare both methods’ payoffs, the solution obtained by SVD is rounded
setting the E elements of aP with higher values to 1, and the rest to zero.
Figure 10.2 presents the difference between the retrieved payoff using SVD
and GA. It is shown that the solution obtained by the SVD has the same
or better payoff in the optimal solution search as the GA algorithm. One
hundred simulations have been run for both aP and aM search, for random
networks with parameters as in section § 9.2. It is seen that the resulting
stationary value of the state vector is equal or more positive (respectively
negative) for SVD than for the GA when the search for the P team (respec-
tively M team) is conducted. Sometimes the payoff is practically the same
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Figure 10.2: Difference between the payoffs obtained using GA and SVD in
the search of optimal aP and aM.

despite some percentage differences in the chosen agents in the action vec-
tor selected to be 1, indicating that there are agents with almost the same
impact on the overall result.

Obviously, the selection of the individual actions of agents in aP (aM)
must be related to adjacency matrices SP (SM) and A. In fact, here it is
checked the relationship between the actions aP (aM) of each element in P
and M teams and their eigencentrality. For example, Figure 10.3 depicts
(for one of the run cases) the vectors of actions and of eigencentralities with
respect to the matrix defined in eq. 8.4.

The second vector has been rescaled to the norm of the first one. It can
be observed the similarity (although not equivalence) of both values after
renormalization. This fact indicates that indeed the optimal action is very
close to the eigencentrality of the elements of P (or M) team in the overall
network, and hence actuation proportional to this measure would lead to a
nearly optimal solution.

10.3 Optimal design of team connections for

the whole network

This section goes one step beyond the previous finding and look for the
design of an optimal SP (SM) network, in order to maximize the achievable
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Figure 10.3: Elements of optimal action vectors aP (top) and aM (bottom)
based on SVD, and comparison with rescaled eigencentrality of each node

payoff. The situation described in previous sections implies that the SP and
SM adjacency matrices are given a priori and each team has to look for the
optimal aP and aM respectively. However, we can foresee a more advanced
scenario in which at least one of the teams could design the connections of
each of its agents with the GP group. Such design should again follow some
fairness rules related to the magnitudes of the links between agents and GP .
In that sense, it is conceivable to impose that the Frobenius norm of the SP
and SM matrix have the same value.

The network optimization process will be defined in the following for SP ,
being equivalently applicable to SM . It should be noted that the payoff of
the utility function of the P team to be optimized is given by the following
expression:

ΦP =
N∑
i=1

xi(∞) = uTC · SPaP + f(SM , aM) (10.12)

Here uT (Target u) is a column vector formed by N elements all equal
to 1. It is worth mentioning that the second term f(SM , aM) (action of M
team) can be considered as a constant in the optimization process. Since
this is a term with opposite sign to the first one and it is out of the control
of the P team, it is taken equal to zero in the following sections without loss
of generality, and it is recovered in the last section of this chapter.

Considering the SVD decomposition, it is known that the Frobenius norm
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of SP is given by the square root of the quadratic sum of its singular values
[Horn12]. Hence, one could design an SP matrix with only one nonzero
singular value equal to the norm of SM . In that case, we will have SP as a
function of its first left and right singular vectors (column vectors u1 and v1,
respectively), along with σ1:

SP = u1σ1v1
T (10.13)

It is also observed that the first term in eq. 10.12 is given by a scalar
or dot product between two vectors, uTC and SPaP. Such dot product is
maximum if both vectors are parallel. This can be imposed by setting u1 as
follows:

u1 =
CTuT

T

‖CTuT
T‖2

(10.14)

and also by ensuring that aP is parallel to v1. It should be noted that
v1 could be chosen to be any vector, as will be discussed in the following
section, allowing the most appropriate part of the P team to target uT. In
this section, however, the whole P team is used for this goal, and thus for v1

we define an NP × 1 vector whose elements are all equal to 1. On the other
hand, aP is set parallel to this vector, imposing that its norm is equal to β
(as that of aM) again for fairness purposes:

v1 =
1√
N

[1 1 . . . 1]T

aP =
β√
NP

[1 1 . . . 1]T
(10.15)

Certainly, the same optimal design of SP can equally be addressed by the
M team to obtain optimal SM .

As an example of the efficiency of optimal design of network connections,
we can consider the payoff obtained by an optimal SP designed with respect to
a random general population network using the same parameters as previous
sections and consensus function #1 (see table 8.1). The M team competes
using a random network with SM matrix, and it selects the optimal action
aM accordingly. The process is repeated for 100 cases and the average values
are presented herein. It is observed that the P team significantly outperforms
the M team with a sum of the state vector of 469.6. For information, we have
checked the result with a random SP competing against the same network
SM for each iteration, and the average result has been of -1.69 (close to zero
as expected) when aP is optimally chosen.
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It should be noted that by adapting SP and SM , the degree matrix D
affecting consensus functions #1 and #2 would be altered. Since the exercise
described here results in a full SP and SM , in the following the equation for
C in those two cases is slightly adapted, using Dm instead, which is given
by:

Dm = DA + I · (NP +NM) (10.16)

with DA being the degree matrix of the elements of A with the rest of this
matrix (not with A in total).

10.4 Different targeted subsets

10.4.1 Single target subsets per team

The analysis considered in the previous sections assumes that the goal of
both teams should be to maximize their respective influence over the whole
general population GP . We can envisage, however, a different scenario in
which each team is interested in the state of only a certain set or group
within the GP . There are many reasons for such approach: each team might
have an easier implementation on a certain part because of geographical /
social constraints (e.g. a company can better influence a certain region due
to the nature of its products), historical reasons (it has a more extended
network within that subset of the GP ), etc. This specialization is applicable
to different domains such as competitions between species, electoral influence,
or competition about the market share.

This new landscape can be easily adapted to the approach described
in previous sections by considering that each team has a different target
vector uTP and uTM which respectively form the basis of an associated target
subspace. It is worth mentioning that the only constraint on these target
vectors is that their elements are positive (leading to the addition with the
desired sign for each member of the GP to be influenced) and that the overall
evaluation of the team payoff is measured in unitary terms (if the sum of
the elements of one target vector is higher than the other, they should be
normalized to consider the level of influence per target GP member, and not
over the whole targeted group).

Thus, the procedure for the computation of SP and SM is the one de-
scribed in section 10.3, where the appropriate uT is used in the computation
of the associated network. The unitary payoff for P team is obtained by:
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Figure 10.4: Unitary payoffs of P for different target subspaces used on the
design of SP : target subspace is either the whole GP (left bar), first half
(middle bar) or second half (right bar)

Φ̃ =
uTP∑N

i=1 |uTPi
|
CSPaP (10.17)

In the uTP vector, some elements could be set to zero when not targeted
by the P team. An equivalent expression is used for the M team. Figure 10.4
presents the unitary payoff for a network with the same parameters as in the
previous section and with consensus function #2. A comparison is shown
between the unitary payoffs of SP for three different options: when it targets
either the whole GP , the first half or the second half of GP , respectively.

It is observed that the unitary payoff for P is different even when the sum
of the target vector elements is the same (as the last two cases). Certainly,
the analysis shown in Figure 10.4 could have resulted in the second half of the
population retrieving a higher unitary payoff than in the first half, depending
on the particular GP and P team networks.

The reason for the observed difference among subspaces is related to the
fact that the payoff depends on the amplitude of the rP vector defined as:

rP = ‖uTPC‖2 (10.18)

Thus, it is advisable in the selection of uTP to take this fact into account.
It can be observed that in order to maximize the associated benefit, ideally a
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right singular vector of CT (associated to a maximum singular value of this
matrix) should be chosen. Nevertheless, this would most probably imply a
vector with negative elements, which as previously explained would entail
an addition with different signs in the influenced elements of GP , which is
contrary to the definition of the problem. Hence, such optimization should
be constrained to the positive orthant in the RN space. This analysis of the
best single target subspace is left as a future line of investigation.

10.4.2 Multiple target subsets per team

In order to allow for further strategy capability of each team, we can consider
that they design their respective influence networks SP and SM by targeting
at least two subspaces instead of only one (the extension to more dimensions
is straightforward). For example, let us take the P team (the analysis is
applicable for both teams) and consider that it targets uTP1 (uTP2) by means
of its first (last) NP/2 elements, respectively. Note that these two vectors
could be set based on the needs defined by the P team as previously explained.
The design of the SP matrix can be obtained by letting:

SP = u1σ1v1
T + u2σ2v2

T , (10.19)

where v1 (v2) is a NP × 1 column vector with its first (second) half set to√
2/NP and its second (first) half to zero, respectively. Obviously, v1 and

v2 are orthonormal vectors as necessary for a singular value decomposition
sum as in the previous equation. Regarding u1 and u2, they also have to be
orthonormal. Now, for P team to target uTP1 and uTP2 subspaces we need
to set:

u1 =
CTuTP1

T

‖CTuTP1
T‖2

u2 =
CTuTP2

T

‖CTuTP2
T‖2

(10.20)

We could select uTP1 based on the main goal of P team and look for uTP2

so that the resulting u1 and u2 are orthonormal. Nevertheless, it should be
noted that by imposing such condition, the subspace actually reached by u2

will have a reduced efficiency in the uTP2 direction. The selection of u1 and
u2 must therefore consider these issues.

Furthermore, it is observed in the simulations that if the first singular
value has a ratio with respect to the next one significantly high (e.g. three
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times higher or more) then its associated singular vector renders the best
choice for uTP1 , even if the desired eigenspace is somehow different from this
vector, as long as it shares part of the target elements of the GP . In such
cases, the selection of uTP2 is complementary to that of uTP1 , in order to
target another subspace which is also of interest for the team’s overall payoff.

Figure 10.5 presents a comparison of the ratio between the first and sec-
ond singular values (SV1/SV2) of the consensus function C as a function of
the average degree 〈k〉 and for two types of networks (random and scale-
free). For each type of consensus function, 50 simulations have been run to
generate on each case a random network and a free-scale network, each of
them with parameters N = 200, NP = 20 and such that the average degree
〈k〉 is either 10, 20 or 30 as shown in figure 10.5. The average value of the
mentioned ratio is presented for the three consensus functions. It can be
observed that the ratio is around 1 for consensus functions Average (#2)
and Transportandtrade(#3), independently of 〈k〉. On the other hand, for
consensus function Damped (#1), the singular value ratio grows with the
average degree. The same effect is observed independently of the type of
network that is considered (random or scale-free).

The reported results can be justified as follows. It is known [Fied75] that
the first non-null eigenvalue of the Laplacian matrix of a graph (called the
Fiedler value), corresponds to its algebraic connectivity, and that it is an
important concept to understand the graph dynamics. The more connected
a network is, the further this value is from zero. On the other hand, the
consensus function C for case #1 is close to the inverse of the Laplacian as-
sociated to matrix A (being the D matrix in C the degree matrix of the whole
network including the P and M team connections, and not only associated to
the general population as it is A). Hence, by continuity of eigenvalues, those
of C should be close to the eigenvalues of the inverse of the Laplacian asso-
ciated to A. Thus, the second highest eigenvalue of C can be approximated
to the inverse of the Fiedler value. Given the relationship between singular
values and eigenvalues of a matrix, one concludes that the ratio between the
first two singular values of the matrix C will be higher the more connected
the network is, as it is observed in Figure 10.5.

The conclusion is that regarding case #1, for low connectivity the selec-
tion of uTP1 can be directly based on the main desired target subspace of the
team, while for higher connectivity it is rather preferable to set uTP1 based
on the singular vector associated to the first singular value, and then uTP2

is accordingly taken for the team payoff interests. This consideration is not
applicable to consensus functions #2 and #3, for which the ratio of the first
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Figure 10.5: Average SV1/SV2 ratio between the two first singular values
of the consensus function C, versus average degree for the three described
consensus functions and for different GP networks topologies.

two singular values is not directly linked to the connectivity of the general
population network.

10.5 Competition games on target subsets

As previously explained, the competition between P and M teams exposed
in previous sections can be described in terms of two parallel optimization
processes by each team, which can only select their strategy in maximizing
their respective benefits regardless of the actuation of the other part of the
game. This section considers the competition games in which the payoff for
each team depends on the actions of both teams (in terms of designing their
networks and further selection of the action vectors aP and aM respectively).

As an example, it is considered a game in which P and M both target
the first half of GP by means of the first half of their agents, whilst they use
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Figure 10.6: Target subspaces on GP for P and M teams.

the second half of their agents to target the third and fourth quarter of GP ,
respectively. The situation is depicted in Figure 10.6.

Let us denote by Φ̃P
12 (and Φ̃M

12) the unitary payoff function obtained by

P (M) for its actuation on the first and second quarters of GP , by Φ̃P
3 the

payoff for P for its actuation on the third quarter and by Φ̃M
4 the payoff for

M for acting on the fourth quarter. Note that if both teams selected the
SP and SM networks so that SP = SM (by means of the optimum solution

described above) then Φ̃P
12 = −Φ̃M

12 . The total payoff function for each team
is given by:

Φ̃P = λP Φ̃P
12 + (1− λP )Φ̃P

3

Φ̃M = λM Φ̃M
12 + (1− λM)Φ̃M

4

(10.21)

where λP and λM represent the relative importance of the first target
subspace with respect to the second one for P and M teams, respectively.
These parameters can depend on the particular features of the competition
(for example P team could be more interested in elements of the 1st and 2nd
quarter of GP than M , and then λP > λM). Note that if λP = λM = 1 there
is a zero-sum game over the first half of GP , while for λP = λM = 0 each
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team competes for different subspaces. A similar situation occurs also for a)
λP = 1, λM = 0, and b) λP = 0, λM = 1. Other scenarios consist of mixed
situations between these extreme cases.

It is worth mentioning that in this case, each team targets two subspaces,
the first of which is the first and second quarters of GP in both cases (with
basis vector denoted as uT12). The definition of the u1 and u2 vectors to
obtain the SP matrix must ensure that they are orthogonal to each other and
also that each of them is computed according to eq. 10.20, with target sub-
spaces uT12 and uT3 (for P , third quarter) or uT4 (for M , fourth quarter).
For an arbitrary C, the resulting vectors would not comply with this condi-
tion in general. Hence, u1 is computed based on the first subspace, while the
u2 is computed so that it does not influence in the first one (because it could
have negative elements) but rather in the second one and in the remaining
quarter. Thus, for the P team we have:

u2
T = (α12uT12 + α3uT3 + α4uT4)C (10.22)

Now, in order for u1 and u2 to be orthogonal, their dot product must be
equal to zero. This results in the following condition:

(α12uT12 + α3uT3 + α4uT4)CCTuT12

T = 0 (10.23)

Note that this condition is also equivalent to Cu2 being orthogonal to
uT12 . Similarly, it is imposed Cu2 to be also orthogonal to uT4 . This results
in the following system of equations:[

α3

α4

]
=

[
uT3r uT4r
suT3

T suT4

T

]−1 [ −uT12r
−suT12

T

]
α12 (10.24)

with the following definition of r and s vectors:

r = CCTuTT12
s = uT4CC

T (10.25)

And then, α12, α3 and α4 are scaled to normalize u2. A similar approach
can be defined for the M team changing subspaces accordingly. This way SP
and SM matrices are computed.

It could be argued that a better approach for the second condition would
have been to impose in the second equation that Cu2 is directed along uT3

(by forcing the dot product of their normalized vectors being equal to one).
However, it can be checked that in general this equation cannot be solved
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with real α12, α3 and α4 and therefore it is not taken in the solution of the
problem.

Additionally, it should be remarked that the solution provided above
results in SP and SM matrices for which some of the elements are negative
(particularly for the nodes linked to the fourth quarter). Certainly, this
might not be physically or logically feasible for some problems, but it is still
applicable to many others, and for that reason is explored here.

Payoff P
1

0

0.5

10 0.5

λ M

λP

Payoff M
1

0

0.5

10 0.5

λ M

λP

10

5

0

Figure 10.7: Unitary payoff (shown by a color code) as a function of λP , and
λM for P and M .

Figure 10.7 represents an example of the payoff obtained by P and M
in the case of a particular random GP network with steady state given by
consensus function #2 and the same parameters as those used in the example
for previous sections. The W matrix in C has four different sub-blocks Wij,
with i, j = 1, 2. To introduce some additional asymmetry, the upper two
blocks (W11, W12) are randomly obtained, while all elements of W21 are set
equal to 1 and those of W22 are null. The aforementioned figure depicts the
unitary payoff for P and M teams as a function of λP and λM when each
team uses an optimal solution for the SP (or SM) and its associated action.
As previously commented, since the shown payoff is unitary, the total payoff
for each team depends on the number of targeted elements.

For the λP = λM = 1 case the resulting payoff for both teams is zero
since it is a zero-sum game with symmetric configuration. For the rest of
values, it is no longer a pure zero-sum game and there is no symmetry.
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The previous model can also introduce two additional parameters (respec-
tively βP and βM , both positive) to model the effect on each team’s payoff of
their simultaneous activity upon a certain subspace, which could be counter-
productive for the interests of both parties. For example, this would be the
case if too many political statements are given by both teams to a group of
voters over which they are directly competing, ultimately discouraging the
associated segment of the general population to align with either of the two
political options.

The following equations model the commented effect:

Φ̃P = λP Φ̃P
12(1 + βP Φ̃M

12) + (1− λP )Φ̃P
3

Φ̃M = λM Φ̃M
12(1 + βM Φ̃P

12) + (1− λM)Φ̃M
4

(10.26)

Since Φ̃P
12 and Φ̃M

12 have opposite signs, the resulting products implying
βP and βM coefficients are negative as intended. These equations can be can
analysed in more detail by taking into account first that:

Φ̃P
12 = uT12C [SPaP − SMaM]

Φ̃M
12 = −Φ̃P

12

Φ̃P
3 = uT3C [SPaP − SMaM]

Φ̃M
4 = uT4C [SMaM − SPaP]

(10.27)

Also, since aP and aM must be constrained to have a norm equal to a
common value (denoted by β, whose square is the energy E) it can be noted
that the action aP (and similarly for aM) can be distributed between the two
subspaces of action by means of the following equation:

aP = f(θP )[θPv1 + (1− θP )v2]

f(θP ) =

√
E

θ2P + (1− θP )2
(10.28)

where θP (resp. θM) is the strategy of the P team (resp. M team), and
it represents the percentage of energy E being distributed among the two
subspaces available to that team. Now, the following notation can be used
for simplicity to define the following constant scalars, with i = 1, 2:

iKP
12 = uT12CSPvi

iKM
12 = uT12CSMvi

iKP
3 = uT3CSPvi

iKM
3 = uT3CSMvi

iKP
4 = uT4CSPvi

iKM
4 = uT4CSMvi

(10.29)
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By analysing the equations, it can be deduced that the first, second,
fourth and fifth elements in the list above are zero for i = 2. Also, the nonzero
constants are in fact positive since they imply a bilinear form with positive
matrix and with nonnegative vectors (considering the SVD decomposition of
SP and SM). For example:

1KP
3 = uT3Cu1σ1 = uT3CC

TuT12σ1 > 0 (10.30)

Considering the above definitions, we have from eq. 10.27 and eq. 10.28:

Φ̃P
12 = f(θP )

[
1KP

12θP
]
− f(θM)

[
1KM

12 θM +2 KM
12 (1− θM)

]
(10.31)

and similarly:

Φ̃P
3 = f(θP )

[
1KP

3 θP +2 KP
3 (1− θP )

]
(10.32)

−f(θM)
[
1KM

3 θM +2 KM
3 (1− θM)

]
Similar equations are applicable to the M team. This scenario can be

considered as a continuous game for which a differential Nash equilibrium
(NE) is to be found (see [Rat13] for details). According to proposition 2 in
[Rat13], the NE of the game defined in eq. 10.26 must satisfy the following
conditions (with θ∗P and θ∗M being the optimal strategies of P and M team,
respectively):

∂Φ̃P (θ∗P , θM)

∂θP
= 0

∂2Φ̃P (θ∗P , θM)

∂θ2P
< 0

∂Φ̃M(θP , θ
∗
M)

∂θM
= 0

∂2Φ̃M(θP , θ
∗
M)

∂θ2P
< 0

(10.33)

Now, if βP and βM are equal to zero (as in the case defined in eq. 10.21)
it is observed that the derivatives above render decoupled equations, so the
condition to obtain θ∗P is independent of θM and viceversa. This confirms the
observation on the search of optimal solution given in eq. 10.12, for which the
optimal solution is taken as a separate optimization exercise for each team.
However, in the general case where βP and βM are nonzero, the resulting
equations are indeed coupled and the optimal solution must be found solving
the system of equations.

It should be noted that in eq. 10.26 λP and λM could vary in the long
term depending on external conditions (changes in market tendencies, etc.).
The NE would vary accordingly. This is observed in the following numerical
example.
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Figure 10.8: Unitary payoff for P and M teams as a function of the control
variables θP , θM (with λP = 0.1 and λM = 0.1)

The exercise is continued with the same GP network used for Figure
10.7. Nevertheless, it should be noticed that the game considered here is
different since now the governing equations given by eq. 10.27 are coupled,
with βP = βM = 0.1. Out of the possible values of λP and λM we take
0.1 and 0.1, respectively, for the first phase of the analysis, and then their
values are changed to λP = 0.8 and λM = 0.9, associated to a change in
environmental conditions of the game. For information, Figure 10.8 presents
the payoff for each team for the first set of λP and λM , as a function of the
control variables θP and θM .

The NE can be computed by means of the conditions given in eq. 10.33,
for which the actual derivation of the gradient is given in the Appendix (see
equation A.2). The obtained pair of values corresponding to the first phase
is NE1 = [0.583, 0.586]. The second NE is found at NE2 = [0.883, 0.935].
Furthermore, the second derivative of the payoff function is negative for both
NE, as required also in eq. 10.33.

Now it can be envisaged an iterative process in which each team tries
to optimize its payoff based on the observed status at each step and the
local derivative of its payoff function. The way that the NE is dynamically
reached by both teams is based on a steepest ascent algorithm, as opposed
to descent described in [Rat13] since here it is considered a payoff function
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(instead of a cost) to be maximized. The dynamic equation is given by:

[
θn+1
P

θn+1
M

]
=

[
θnP
θnM

]
+ h


∂Φ̃P (θnP , θ

n
M)

∂θP
∂Φ̃M(θnM , θ

n
M)

∂θM

 (10.34)

The results of the implementation of this algorithm for h = 10−4 is shown
in the blue thick curve in Figure 10.9, where the aforementioned value NE1 is
reached, after starting from an arbitrary value at [0.1, 0.6]. Similarly, the red
thick curve depicts the evolution of both P and M strategies, reaching a NE
which is also coherent with the NE2 value referred above. The same figure
depicts also the level lines of the payoff curves shown in Figure 10.8 (with
dashed lines corresponding to P payoff, and solid lines to M payoff). Thus,
they correspond only to the first referred phase represented by the thick blue
line. It is observed that the trajectory evolves considering the simultaneous
ascent related to both payoff surfaces, until a zero derivative is reached as
previously explained.

It should be remarked that indeed the reachedNE is not Pareto optimum,
since both teams could have benefited from a better payoff (for example with
θP = θM = 0). This should come as no surprise since the teams choose their
strategies according to the local information at each step, reacting only to the
observed reality, which is a function of the iterative action of the opponent
team, but collaboration for Pareto optima is not involved in the definition of
the game.
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Figure 10.9: Dynamics to reach NE for first (blue) and second (red) phases.
Contour lines for P (dashed) and M (solid) payoff corresponding to the first
phase.
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Chapter 11

Conclusions and future work

Conclusions

This thesis has addressed the application of control to the dynamical be-
haviour of complex systems, in the framework of vibrational dynamics and
of games on complex networks. Relevant conclusions have been obtained in
both cases in terms of the control strategies to be followed.

In the case of laser control of HCN vibrational dynamics, the results have
shed very important insights in terms of controlling the dynamic regime by
means of the frequency of the applied laser to the molecule, and also on the
related dissociation behaviour. A frequency analysis has been conducted of
the laser driven nonlinear dynamics of HCN described with a widespread 2D
vibrational model including the HC and CN stretchings. The dependence
of the dynamics with the laser frequency has been thoroughly studied, this
representing an extension of previous studies [Set12]. A SALI map has been
used to characterize the level of ergodicity of the system across the phase
space, and the structural dependency on the laser frequency has been stud-
ied. Relevant information has been retrieved on the dependency on the laser
frequency, by putting forward its relationship with the fundamental frequen-
cies of the system tori to characterize the molecule behavior in terms of
chaoticity and dissociation observed in the phase space. As a result of the
analysis of the system in the time and frequency domains, the dependence of
the dynamics on the driving field indicates that this is a plausible parameter
to be used for control purposes.

Regarding complex networks, we have addressed the competition between
two teams that are connected to a network of elements, each of them retriev-
ing a certain payoff as a result of the steady state reached by the nodes in the
general network GP . These nodes follow certain consensus dynamics and the
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analysis presented here is applicable independently of the chosen consensus
function. Each team competes with the same energy available for the set of
agents, while the adjacency matrices SP and SM defining the connection of
each team with the general network have the same norm.

The following list summarizes the most relevant particular conclusions
reached during the research presented here:

1. We have confirmed that in the HCN vibrational dynamics there is a
very robust 1:1 resonance between the HC and CN stretchings which
represents the strongest bottleneck for IVR in the molecule.

2. This fact explains that when the laser is on the ratio ωF/ω
[1:1]
1,2 appears

as the most significant one from the dynamical point of view[Kol54a,
Arn61, Mos68, Ber78, Chi79].

3. Similarly to Ref. [Set12], we find the existence of two regions in phase
(or frequency) space, namely the dissociation hub (DH) and the noble
hub (NH), which depend on the value of ωF and are most relevant for
the laser/molecule interaction. Since the energies considered in this
work are substantially higher than that of the molecular minimum, the
frequencies of the system cannot be approximated to the harmonic ones
that can be derived from the potential Morse functions, and should be
accurately computed in order to correctly explain the laser/molecule
interaction.

4. The destruction of tori in phase space is to be regarded in terms of
the relation of the laser frequency with frequencies ωF = ω

[1:1]
1,2 and

ωF = ω
[3:2]
2 associated with resonance regions 1:1 and 3:2, respectively.

A rational resonance with either these frequencies lead to the destruc-
tion of tori in the dynamics in the corresponding region, whilst a pro-
portional relation with the golden mean lead to a high level of regularity
in that area of the phase space.

5. The frequency map clearly shows that the resonance (1, -1, 0) consti-
tutes a robust bottleneck dividing the frequency space of the HCN in
the presence of a laser into two different regions, the NH and DH.

6. Dissociation phenomena are also observed in the frequency domain
when the laser frequency is increased. A high degree of chaoticity is
present in those trajectories. The obtained results are in good relation
with those observed in phase space. In all cases dissociating trajectories
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depart from the DH. Conversely, trajectories with initial conditions in
the NH and in the 1:1 resonance region do not lead to dissociation.

7. A figure in the format as Fig. 6.8 can be used summarize how the
molecular tori destruction depends on the ωF/ω1, 2[1:1] ratio, and how
this affects the dynamics of the system.

8. On games over complex networks, this research has analysed the op-
timal actuation of each agent within one team (forming an optimal
action vector), first from a numerical perspective based either on ex-
haustive search for solutions or by means of genetic algorithms, and
then by an analytical solution based on singular value decomposition
of a suitably chosen matrix. By comparing both results, it has been
verified the optimality of the technique based on singular values.

9. This approach has been further explored to obtain the optimal design of
the matrices SP and SM that brings a maximum achievable payoff when
selecting the optimal action vector. It has been shown that singular
value decomposition renders the optimal solution in the design of the
network connecting one team to the GP .

10. The validity of the results in games on networks is independent on the
consensus function, which provides a high flexibility in the applicability
of the results.

11. It is observed that the average ratio between the first two singular
values of the consensus function increases with average degree in the
case of damped consensus, while it is close to 1 for the other two types
of consensus function. The theoretical justification is provided, based
on the Laplacian matrix.

12. The scope of the game can be further generalized by considering the
possibility of each team targeting a different subgroup within GP , and
also of aiming towards more than one subgroup. In the second case,
each team can play with the distribution of its optimal actuation on
each subspace considering also the equivalent strategy followed by the
opposing team.

13. It is observed that games over subspaces of the target population allow
the numerical computation of a Nash equilibrium based on steepest
ascent, by simulating the trajectory of each team. It is verified that
the retrieved outcome matches the analytically computed result.
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Future work

The development of control algorithms to bring the system to target regions
of phase space and frequency map (based on the presented concepts of funda-
mental frequencies and relation with the laser frequency) will be the subject
of further research. The results in Fig. 6.8 should play a crucial role in making
these algorithms precise. Furthermore, the conclusions reached for the HCN
molecule can also be analyzed for other type of molecules. A step beyond
should also take into account the effect of energy as an additional degree of
freedom (along with laser frequency) in the molecular vibrational dynamics
control problem.

On the other hand, the analysis on games on complex networks could
also be generalized to the problem of more than two teams. This extended
setup could be addressed by introducing complex numbers in the analysis
presented here, where each team is assigned a certain desired phase in the
complex plane, aiming to lead the population close to that value. Further-
more, the idea of competing dynamics in a network attending to opposite
interests has been explored here for consensus dynamics, but these type of
games could similarly be extended to synchronization phenomena, as a set of
Kuramoto oscillators. The analysis on conformist and contrarians addressed
in [Jad04, Hong11b] can be a starting point for the application of the theo-
retical framework established in this thesis to games over oscillator networks
between two external teams. Additionally, the present investigation in games
on networks opens the door to future steps such as proper characterization of
interactions within the GP network, or robustness of the optimal strategies
to uncertainties (both in the GP topology and in the consensus dynamics).
Also, the analysis could be extended to different dynamics not necessarily
subject to a steady state solution but where the subspace division and the
strategy based on singular values can still be valid. Furthermore, the flexibil-
ity of the described game setup and optimal strategies for a team brings an
opportunity to apply this approach to a variety of scenarios such as compe-
tition within a market, strategies for influencing public opinion, or biological
games on networks. On the latter case, it is worth commenting that, as op-
posed to other studies such as in [Kar11], the present study assumes elements
outside the general population that indirectly affect the state of the popula-
tion’s elements, along with a certain intelligence in the coordination of agents
within a team. This can be a particular advantage in situations where such
central intelligence is not present on the opposing side, such as combating
an illness within an individual or a community (both of them associated to
a network where the game is established).



Appendix A

Numerical methods

A.1 Numerical methods for HCN dynamics

analysis

A.1.1 Symplectic Hamilton equations propagation

In this thesis, the propagation of the Hamilton equations for the analysis of
the HCN molecule is conducted following the sympletic method known as
Störmer-Verlet[Hai03]. The generic equations are as follows:

p[n+
1

2
] = p[n]− h

2
∇qH(p[n+

1

2
],q[n]),

q[n+ 1] = q[n] +
h

2
(∇pH(pn+ 1

2
,qn) +∇pH(p[n+

1

2
],q[n+ 1])),

p[n+ 1] = p[n+
1

2
]− h

2
∇qH(p[n+

1

2
],q[n+ 1]),


(A.1)

where h is the integration step, H is the Hamiltonian, and ∇pH,∇qH are
the partial derivatives of H with respect to p and q, which are to be evaluated
at the points given in the equations. Since p and q are vectors, such partial
derivatives are indeed gradients of H in the associated directions. Although
these equations are implicit, for separable Hamiltonian as in the HCN case,
they render explicit equations. In the case of the HCN and considering the
Hamiltonian with the laser, we have:
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p1[n+
1

2
] =p1[n]− hD1α1

(
1− e−α1q1[n]

)
e−α1q1[n]−

− h

2
λF cosωF t[e

−η(q1[n]+reCH)(−ηΣ + dΣ)],

p2[n+
1

2
] =p2[n]− hD2α2

(
1− e−α2q2[n]

)
e−α2q2[n],

q1[n+ 1] =q1[n] + h(
p1[n+ 1

2
]

MCH

−
p2[n+ 1

2
]

MC

),

q2[n+ 1] =q2[n] + h(
p2[n+ 1

2
]

MCN

−
p1[n+ 1

2
]

MC

),

p1[n+ 1] =p1[n+
1

2
]− hD1α1

(
1− e−α1q1[n+1]

)
e−α1q1[n+1]−

− h

2
λF cosωF t[e

−η(q1[n+1]+reCH)(−ηΣ + dΣ)],

p2[n+ 1] =p2[n+
1

2
]− hD2α2

(
1− e−α2q2[n+1]

)
e−α2q2[n+1],



(A.2)

with:

Σ =
4∑
j=1

Aj(q1 + reCH)j,

dΣ =
4∑
j=1

jAj(q1 + reCH)j−1,

d2Σ =
4∑
j=2

j(j − 1)Aj(q1 + reCH)j−2,


(A.3)

and the last equation d2Σ is used in the computation of the SALI coeffi-
cient as shown in the next epigraph.

A.1.2 SALI coefficient computation for HCN molecule

Equation 2.59 shows how to propagate vector vi to compute the SALI coef-
ficient. For this purpose the Hessian of the Hamiltonian is to be computed.
In the case of the HCN dynamics, the Hessian is given as:

∇2 =

[
∇a 0
0 ∇b

]
, (A.4)
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where the 0’s denote a 2x2 zero matrices, and ∇a,∇b are given as follows:

∇a =

[
∇a11 0

0 ∇a22

]
, (A.5)

and

∇b =

 1

MCH

− 1

MC

− 1

MC

1

MCN

 , (A.6)

with

∇a11 =2D1α
2
1(2e

−2α2q1[n] − e−α2q1[n])−
− λF cos(ωF t)e−η(q1+r

e
CH))(Ση2 − 2ηdΣ + d2Σ),

∇a22 =2D2α
2
2(2e

−2α2q2[n] − e−α2q2[n]),

 (A.7)

A.2 Numerical methods for game dynamics

towards Nash equilibrium

The evaluation of the eq. 10.33 implies a gradient, whose expression is de-
tailed herein (with the definition of the variables and functions as given in
that section):

∂Φ̃P (θnP , θ
n
M)

∂θP
=

λP (1KP
12f(θP )− (EKP

12θ
n
P (4θnP − 2))

(2((θnP − 1)2 + (θnP )2)2f(θP ))
)(βP (1KM

12 θ
n
Mf(θN)−1 KP

12θ
n
Pf(θP )) + 1)−

− ((1KP
3 −2 KP

3 )f(θP )− (E(1KP
3 θ

n
P −2 KP

3 (θnP − 1))(4θnP − 2))

(2((θnP − 1)2 + (θnP )2)2 ∗ f(θP ))
)(λP − 1)+

+ βPλP (1KP
12f(θP )− (E1KP

12θ
n
P (4θnP − 2))

(2((θnP − 1)2 + (θnP )2)2f(θP ))
)(1KP

12θ
n
Mf(θN)−1 KP

12θ
n
Pf(θP ))

(A.8)
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∂Φ̃M(θnM , θ
n
M)

∂θM
=

− ((1KM
4 −2 KM

4 )f(θnM)− (E(1KM
4 θ

n
M −2 KM

4 (θnM − 1))(4θnM − 2))

(2((θnM − 1)2 + (θnM)2)2f(θnM))
)(λM − 1)−

− λM(1KM
12 f(θnM)− (E1KM

12 θ
n
M(4θnM − 2))

(2((θnM − 1)2 + (θnM)2)2f(θnM))
)(βM(1KM

12 θ
n
Mf(θnM)−1 KP

12θ
n
Pf(θnP ))− 1)−

− βMλM(1KM
12 f(θnM)− (E1KM

12 θ
n
M(4θnM − 2))

(2((θnM − 1)2 + (θnM)2)2 ∗ f(θnM))
)(1KM

12 θ
n
Mf(θnM)−1 KP

12θ
n
Pf(θnP ))

(A.9)
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